Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Pharmacol Sci ; 44(8): 495-506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331914

RESUMO

It is generally assumed that the rewarding effects of cannabinoids are mediated by cannabinoid CB1 receptors (CB1Rs) the activation of which disinhibits dopaminergic neurons in the ventral tegmental area (VTA). However, this mechanism cannot fully explain novel results indicating that dopaminergic neurons also mediate the aversive effects of cannabinoids in rodents, and previous results showing that preferentially presynaptic adenosine A2A receptor (A2AR) antagonists counteract self-administration of Δ-9-tetrahydrocannabinol (THC) in nonhuman primates (NHPs). Based on recent experiments in rodents and imaging studies in humans, we propose that the activation of frontal corticostriatal glutamatergic transmission constitutes an additional and necessary mechanism. Here, we review evidence supporting the involvement of cortical astrocytic CB1Rs in the activation of corticostriatal neurons and that A2AR receptor heteromers localized in striatal glutamatergic terminals mediate the counteracting effects of the presynaptic A2AR antagonists, constituting potential targets for the treatment of cannabinoid use disorder (CUD).


Assuntos
Canabinoides , Humanos , Animais , Canabinoides/farmacologia , Receptores de Canabinoides , Recompensa , Neurônios Dopaminérgicos , Receptor CB1 de Canabinoide
2.
Neuropsychopharmacology ; 43(1): 116-141, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28845848

RESUMO

Cannabis use has become increasingly accepted socially and legally, for both recreational and medicinal purposes. Without reliable information about the effects of cannabis, people cannot make informed decisions regarding its use. Like alcohol and tobacco, cannabis can have serious adverse effects on health, and some people have difficulty discontinuing their use of the drug. Many cannabis users progress to using and becoming addicted to other drugs, but the reasons for this progression are unclear. The natural cannabinoid system of the brain is complex and involved in many functions, including brain development, reward, emotion, and cognition. Animal research provides an objective and controlled means of obtaining information about: (1) how cannabis affects the brain and behavior, (2) whether medications can be developed to treat cannabis use disorder, and (3) whether cannabis might produce lasting changes in the brain that increase the likelihood of becoming addicted to other drugs. This review explains the tactics used to address these issues, evaluates the progress that has been made, and offers some directions for future research.


Assuntos
Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/etiologia , Moduladores de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Abuso de Maconha/tratamento farmacológico , Recompensa , Animais , Comportamento Aditivo/metabolismo , Moduladores de Receptores de Canabinoides/efeitos adversos , Canabinoides/efeitos adversos , Cannabis/efeitos adversos , Humanos , Abuso de Maconha/metabolismo
3.
Neuropsychopharmacology ; 42(8): 1619-1629, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28139681

RESUMO

The currently available antismoking medications have limited efficacy and often fail to prevent relapse. Thus, there is a pressing need for newer, more effective treatment strategies. Recently, we demonstrated that enhancing endogenous levels of kynurenic acid (KYNA, a neuroinhibitory product of tryptophan metabolism) counteracts the rewarding effects of cannabinoids by acting as a negative allosteric modulator of α7 nicotinic receptors (α7nAChRs). As the effects of KYNA on cannabinoid reward involve nicotinic receptors, in the present study we used rat and squirrel monkey models of reward and relapse to examine the possibility that enhancing KYNA can counteract the effects of nicotine. To assess specificity, we also examined models of cocaine reward and relapse in monkeys. KYNA levels were enhanced by administering the kynurenine 3-monooxygenase (KMO) inhibitor, Ro 61-8048. Treatment with Ro 61-8048 decreased nicotine self-administration in rats and monkeys, but did not affect cocaine self-administration. In rats, Ro 61-8048 reduced the ability of nicotine to induce dopamine release in the nucleus accumbens shell, a brain area believed to underlie nicotine reward. Perhaps most importantly, Ro 61-8048 prevented relapse-like behavior when abstinent rats or monkeys were reexposed to nicotine and/or cues that had previously been associated with nicotine. Ro 61-8048 was also effective in monkey models of cocaine relapse. All of these effects of Ro 61-8048 in monkeys, but not in rats, were reversed by pretreatment with a positive allosteric modulator of α7nAChRs. These findings suggest that KMO inhibition may be a promising new approach for the treatment of nicotine addiction.


Assuntos
Ácido Cinurênico/metabolismo , Nicotina/farmacologia , Reforço Psicológico , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Animais , Cocaína/administração & dosagem , Cocaína/farmacologia , Dopamina/metabolismo , Isoxazóis/farmacologia , Masculino , Nicotina/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Ratos , Recidiva , Saimiri , Prevenção Secundária , Autoadministração , Sulfonamidas/antagonistas & inibidores , Tiazóis/antagonistas & inibidores
4.
Neuropsychopharmacology ; 41(9): 2283-93, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26888056

RESUMO

Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence.


Assuntos
Dronabinol/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Nicotina/administração & dosagem , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Reforço Psicológico , Animais , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Masculino , Abuso de Maconha/prevenção & controle , Recidiva , Rimonabanto , Saimiri , Autoadministração , Tabagismo/prevenção & controle
5.
Psychopharmacology (Berl) ; 233(10): 1867-77, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26803499

RESUMO

RATIONALE: N-(4-hydroxyphenyl)-arachidonamide (AM404) is an anandamide transport inhibitor shown to reduce rewarding and relapse-inducing effects of nicotine in several animal models of tobacco dependence. However, the reinforcing/rewarding effects of AM404 are not clear. OBJECTIVES: We investigated whether AM404 maintains self-administration behavior or reinstates extinguished drug seeking in squirrel monkeys. METHODS AND RESULTS: In monkeys with a history of anandamide or cocaine self-administration, we substituted injections of AM404 (1-100 µg/kg/injection). Using a 10-response, fixed-ratio schedule, self-administration behavior was maintained by AM404. Dose-response curves had inverted U shapes, with peak response rates occurring at a dose of 10 µg/kg/injection. In anandamide-experienced monkeys, we also demonstrated self-administration of another anandamide transport inhibitor VDM11. In addition to supporting self-administration, priming injections of AM404 (0.03-0.3 mg/kg) reinstated drug-seeking behavior previously reinforced by cannabinoids (∆(9)-tetrahydrocannabinol (THC) or anandamide) or cocaine. Both AM404 self-administration behavior and reinstatement of drug seeking by AM404 were reduced by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist rimonabant (0.3 mg/kg). Moreover, the reinforcing effects of AM404 were potentiated by the treatment with the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg) suggesting a major role of anandamide in these effects. Finally, AM404 (0.3 mg/kg) potentiated the reinforcing effects of anandamide but not those of cocaine. CONCLUSIONS: In non-human primates, AM404 effectively reinforced self-administration behavior and induced reinstatement of drug-seeking behavior in abstinent monkeys. These effects appeared to be mediated by cannabinoid CB1 receptors. Therefore, compounds that promote actions of endocannabinoids throughout the brain by inhibiting their membrane transport may have a potential for abuse.


Assuntos
Ácidos Araquidônicos/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Carbamatos/farmacologia , Cocaína/farmacologia , Relação Dose-Resposta a Droga , Dronabinol/farmacologia , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/metabolismo , Masculino , Nicotina/farmacologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Reforço Psicológico , Recompensa , Rimonabanto , Saimiri , Autoadministração
6.
Psychopharmacology (Berl) ; 233(10): 1791-800, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26149611

RESUMO

RATIONALE: Group II metabotropic glutamate receptors (mGluR2 and mGluR3) have been suggested to play an important role in mediation of drug-reinforced behaviors, as well as in the mechanisms underlying relapse in abstinent subjects. The prototypical mGluR2/3 agonist, LY379268, has been shown to attenuate nicotine reinforcement and cue-induced reinstatement of drug seeking in rats, as well as reinstatement induced by drug-associated stimuli and contexts across different drugs of abuse (i.e., cocaine, heroin, and methamphetamine). However, in primates, LY379268 has been shown to produce conflicting results on abuse-related effects of cocaine, and there are no data available for nicotine. OBJECTIVES: To explore the therapeutic potential of mGluR2/3 agonists, we compared the effects of LY379268 (0.03-1.0 mg/kg) on nicotine, cocaine, and food self-administration under a fixed-ratio (FR10) schedule in three separate groups of squirrel monkeys. Moreover, we studied the effects of LY379268 on nicotine/cocaine priming-induced and cue-induced reinstatement of drug-seeking behavior in nicotine- and cocaine-experienced groups of animals. RESULTS: LY379268 blocked nicotine, but not cocaine, self-administration in monkeys. There was a partial overlap between doses that affected nicotine and food self-administration. In abstinent monkeys, LY379268 dose-dependently blocked nicotine, but not cocaine, priming-induced reinstatement of drug seeking. In both cocaine-experienced and nicotine-experienced groups of animals, LY379268 potently reduced cue-induced reinstatement of drug-seeking behavior. CONCLUSIONS: The present findings provide strong support for the potential utility of mGlu2/3 receptor agonists for the treatment of nicotine dependence and suggest their utility for prevention of relapse induced by environmental cues associated with drug taking.


Assuntos
Aminoácidos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cocaína/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Nicotina/administração & dosagem , Tabagismo/tratamento farmacológico , Animais , Sinais (Psicologia) , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Receptores de Glutamato Metabotrópico/agonistas , Recidiva , Reforço Psicológico , Saimiri , Autoadministração
7.
Biol Psychiatry ; 78(7): 452-62, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25802079

RESUMO

BACKGROUND: Based on rodent studies, group II metabotropic glutamate receptors (mGluR2 and mGluR3) were suggested as targets for addiction treatment. However, LY379268 and other group II agonists do not discriminate between the mainly presynaptic inhibitory mGluR2 (the proposed treatment target) and mGluR3. These agonists also produce tolerance over repeated administration and are no longer considered for addiction treatment. Here, we determined the effects of AZD8529, a selective positive allosteric modulator of mGluR2, on abuse-related effects of nicotine in squirrel monkeys and rats. METHODS: We first assessed modulation of mGluR2 function by AZD8529 using functional in vitro assays in membranes prepared from a cell line expressing human mGluR2 and in primate brain slices. We then determined AZD8529 (.03-10 mg/kg, intramuscular injection) effects on intravenous nicotine self-administration and reinstatement of nicotine seeking induced by nicotine priming or nicotine-associated cues. We also determined AZD8529 effects on food self-administration in monkeys and nicotine-induced dopamine release in accumbens shell in rats. RESULTS: AZD8529 potentiated agonist-induced activation of mGluR2 in the membrane-binding assay and in primate cortex, hippocampus, and striatum. In monkeys, AZD8529 decreased nicotine self-administration at doses (.3-3 mg/kg) that did not affect food self-administration. AZD8529 also reduced nicotine priming- and cue-induced reinstatement of nicotine seeking after extinction of the drug-reinforced responding. In rats, AZD8529 decreased nicotine-induced accumbens dopamine release. CONCLUSIONS: These results provide evidence for efficacy of positive allosteric modulators of mGluR2 in nonhuman primate models of nicotine reinforcement and relapse. This drug class should be considered for nicotine addiction treatment.


Assuntos
Comportamento de Procura de Droga/efeitos dos fármacos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Indóis/farmacologia , Oxidiazóis/farmacologia , Tabagismo/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Cricetulus , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/sangue , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Células HEK293 , Humanos , Indóis/sangue , Masculino , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Oxidiazóis/sangue , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Saimiri , Autoadministração , Tabagismo/fisiopatologia
8.
Neuropsychopharmacology ; 40(9): 2185-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25754762

RESUMO

Inhibition of the enzyme fatty acid amide hydrolase (FAAH) counteracts reward-related effects of nicotine in rats, but it has not been tested for this purpose in non-human primates. Therefore, we studied the effects of the first- and second-generation O-arylcarbamate-based FAAH inhibitors, URB597 (cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester) and URB694 (6-hydroxy-[1,1'-biphenyl]-3-yl-cyclohexylcarbamate), in squirrel monkeys. Both FAAH inhibitors: (1) blocked FAAH activity in brain and liver, increasing levels of endogenous ligands for cannabinoid and α-type peroxisome proliferator-activated (PPAR-α) receptors; (2) shifted nicotine self-administration dose-response functions in a manner consistent with reduced nicotine reward; (3) blocked reinstatement of nicotine seeking induced by reexposure to either nicotine priming or nicotine-associated cues; and (4) had no effect on cocaine or food self-administration. The effects of FAAH inhibition on nicotine self-administration and nicotine priming-induced reinstatement were reversed by the PPAR-α antagonist, MK886. Unlike URB597, which was not self-administered by monkeys in an earlier study, URB694 was self-administered at a moderate rate. URB694 self-administration was blocked by pretreatment with an antagonist for either PPAR-α (MK886) or cannabinoid CB1 receptors (rimonabant). In additional experiments in rats, URB694 was devoid of THC-like or nicotine-like interoceptive effects under drug-discrimination procedures, and neither of the FAAH inhibitors induced dopamine release in the nucleus accumbens shell--consistent with their lack of robust reinforcing effects in monkeys. Overall, both URB597 and URB694 show promise for the initialization and maintenance of smoking cessation because of their ability to block the rewarding effects of nicotine and prevent nicotine priming-induced and cue-induced reinstatement.


Assuntos
Benzamidas/farmacologia , Carbamatos/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Recompensa , Animais , Compostos de Bifenilo/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Sinais (Psicologia) , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Masculino , Oxigenases de Função Mista/metabolismo , Modelos Animais , Ratos , Ratos Sprague-Dawley , Recidiva , Saimiri , Autoadministração , Fatores de Tempo
9.
J Neurosci ; 34(19): 6480-4, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24806674

RESUMO

Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Dronabinol/farmacologia , Receptor A2A de Adenosina/efeitos dos fármacos , Receptores Pré-Sinápticos/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Dronabinol/antagonistas & inibidores , Masculino , Abuso de Maconha/tratamento farmacológico , Purinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Reforço Psicológico , Recompensa , Saimiri , Autoadministração , Xantinas/farmacologia
10.
Neuropharmacology ; 67: 476-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23261866

RESUMO

Caffeine induces locomotor activation by its ability to block adenosine receptors. Caffeine is metabolized to several methylxanthines, with paraxanthine being the main metabolite in humans. In this study we show that in rats paraxanthine has a stronger locomotor activating effect than caffeine or the two other main metabolites of caffeine, theophylline and theobromine. As previously described for caffeine, the locomotor activating doses of paraxanthine more efficiently counteract the locomotor depressant effects of an adenosine A(1) than an adenosine A(2A) receptor agonist. In drug discrimination experiments in rats trained to discriminate a maximal locomotor activating dose of caffeine, paraxanthine, unlike theophylline, generalized poorly to caffeine suggesting the existence of additional mechanisms other than adenosine antagonism in the behavioral effects of paraxanthine. Pretreatment with the nitric oxide inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) reduced the locomotor activating effects of paraxanthine, but not caffeine. On the other hand, pretreatment with the selective cGMP-preferring phosphodiesterase PDE9 inhibitor BAY 73-6691, increased locomotor activity induced by caffeine, but not paraxanthine. Ex vivo experiments demonstrated that paraxanthine, but not caffeine, can induce cGMP accumulation in the rat striatum. Finally, in vivo microdialysis experiments showed that paraxanthine, but not caffeine, significantly increases extracellular levels of dopamine in the dorsolateral striatum, which was blocked by l-NAME. These findings indicate that inhibition of cGMP-preferring PDE is involved in the locomotor activating effects of the acute administration of paraxanthine. The present results demonstrate a unique psychostimulant profile of paraxanthine, which might contribute to the reinforcing effects of caffeine in humans.


Assuntos
Cafeína/metabolismo , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Atividade Motora/efeitos dos fármacos , Teofilina/metabolismo , Teofilina/farmacologia , Animais , Humanos , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley
11.
Neuropsychopharmacology ; 37(8): 1838-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453137

RESUMO

Experimental drugs that activate α-type peroxisome proliferator-activated receptors (PPARα) have recently been shown to reduce the rewarding effects of nicotine in animals, but these drugs have not been approved for human use. The fibrates are a class of PPARα-activating medications that are widely prescribed to improve lipid profiles and prevent cardiovascular disease, but these drugs have not been tested in animal models of nicotine reward. Here, we examine the effects of clofibrate, a representative of the fibrate class, on reward-related behavioral, electrophysiological, and neurochemical effects of nicotine in rats and squirrel monkeys. Clofibrate prevented the acquisition of nicotine-taking behavior in naive animals, substantially decreased nicotine taking in experienced animals, and counteracted the relapse-inducing effects of re-exposure to nicotine or nicotine-associated cues after a period of abstinence. In the central nervous system, clofibrate blocked nicotine's effects on neuronal firing in the ventral tegmental area and on dopamine release in the nucleus accumbens shell. All of these results suggest that fibrate medications might promote smoking cessation. The fact that fibrates are already approved for human use could expedite clinical trials and subsequent implementation of fibrates as a treatment for tobacco dependence, especially in smokers with abnormal lipid profiles.


Assuntos
Clofibrato/farmacologia , Avaliação Pré-Clínica de Medicamentos/psicologia , Hipolipemiantes/farmacologia , Nicotina/farmacologia , Recompensa , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Clofibrato/uso terapêutico , Modelos Animais de Doenças , Dopamina/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Indóis/farmacologia , Masculino , Neurônios/fisiologia , Nicotina/administração & dosagem , Nicotina/antagonistas & inibidores , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Saimiri , Prevenção Secundária , Autoadministração , Tabagismo/tratamento farmacológico , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
12.
Br J Pharmacol ; 165(8): 2539-48, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21557729

RESUMO

BACKGROUND AND PURPOSE: The fatty acid amide hydrolase inhibitor URB597 can reverse the abuse-related behavioural and neurochemical effects of nicotine in rats. Fatty acid amide hydrolase inhibitors block the degradation (and thereby magnify and prolong the actions) of the endocannabinoid anandamide (AEA), and also the non-cannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). OEA and PEA are endogenous ligands for peroxisome proliferator-activated receptors alpha (PPAR-α). Since recent evidence indicates that PPAR-α can modulate nicotine reward, it is unclear whether AEA plays a role in the effects of URB597 on nicotine reward. EXPERIMENTAL APPROACH: A way to selectively increase endogenous levels of AEA without altering OEA or PEA levels is to inhibit AEA uptake into cells by administering the AEA transport inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404). To clarify AEA's role in nicotine reward, we investigated the effect of AM404 on conditioned place preference (CPP), reinstatement of abolished CPP, locomotor suppression and anxiolysis in an open field, and dopamine elevations in the nucleus accumbens shell induced by nicotine in Sprague-Dawley rats. KEY RESULTS: AM404 prevented the development of nicotine-induced CPP and impeded nicotine-induced reinstatement of the abolished CPP. Furthermore, AM404 reduced nicotine-induced increases in dopamine levels in the nucleus accumbens shell, the terminal area of the brain's mesolimbic reward system. AM404 did not alter the locomotor suppressive or anxiolytic effect of nicotine. CONCLUSIONS AND IMPLICATIONS: These findings suggest that AEA transport inhibition can counteract the addictive effects of nicotine and that AEA transport may serve as a new target for development of medications for treatment of tobacco dependence. LINKED ARTICLES: This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.


Assuntos
Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/uso terapêutico , Comportamento Aditivo/tratamento farmacológico , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/fisiologia , Comportamento Aditivo/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Dopamina/metabolismo , Dronabinol/farmacologia , Endocanabinoides , Masculino , Atividade Motora/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley , Recompensa
13.
Neuropsychopharmacology ; 37(3): 685-96, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22030716

RESUMO

Since cloning of the dopamine receptor D4 (DRD4), its role in the brain has remained unclear. It has been reported that polymorphism of the DRD4 gene in humans is associated with reactivity to cues related to tobacco smoking. However, the role of DRD4 in animal models of nicotine addiction has seldom been explored. In our study, male Long-Evans rats learned to intravenously self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Effects of the selective DRD4 antagonist L-745,870 were evaluated on nicotine self-administration behavior and on reinstatement of extinguished nicotine-seeking behavior induced by nicotine-associated cues or by priming injections of nicotine. L-745,870 was also tested on reinstatement of extinguished food-seeking behavior as a control. In addition, the selective DRD4 agonist PD 168,077 was tested for its ability to reinstate extinguished nicotine-seeking behavior. Finally, L-745,870 was tested in Sprague Dawley rats trained to discriminate administration of 0.4 mg/kg nicotine from vehicle under an FR schedule of food delivery. L-745,870 significantly attenuated reinstatement of nicotine-seeking induced by both nicotine-associated cues and nicotine priming. In contrast, L-745,870 did not affect established nicotine self-administration behavior or reinstatement of food-seeking behavior induced by food cues or food priming. L-745,870 did not produce nicotine-like discriminative-stimulus effects and did not alter discriminative-stimulus effects of nicotine. PD 168,077 did not reinstate extinguished nicotine-seeking behavior. As DRD4 blockade by L-745,870 selectively attenuated both cue- and nicotine-induced reinstatement of nicotine-seeking behavior, without affecting cue- or food-induced reinstatement of food-seeking behavior, DRD4 antagonists are potential therapeutic agents against tobacco smoking relapse.


Assuntos
Comportamento Animal/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Nicotina/administração & dosagem , Receptores de Dopamina D4/antagonistas & inibidores , Animais , Aprendizagem por Discriminação/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Masculino , Piridinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração
14.
Biol Psychiatry ; 69(7): 633-41, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20801430

RESUMO

BACKGROUND: Recent findings indicate that inhibitors of fatty acid amide hydrolase (FAAH) counteract the rewarding effects of nicotine in rats. Inhibition of FAAH increases levels of several endogenous substances in the brain, including the endocannabinoid anandamide and the noncannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide, which are ligands for alpha-type peroxisome proliferator-activated nuclear receptors (PPAR-α). Here, we evaluated whether directly acting PPAR-α agonists can modulate reward-related effects of nicotine. METHODS: We combined behavioral, neurochemical, and electrophysiological approaches to evaluate effects of the PPAR-α agonists [[4-Chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY14643) and methyl oleoylethanolamide (methOEA; a long-lasting form of OEA) on 1) nicotine self-administration in rats and squirrel monkeys; 2) reinstatement of nicotine-seeking behavior in rats and monkeys; 3) nicotine discrimination in rats; 4) nicotine-induced electrophysiological activity of ventral tegmental area dopamine neurons in anesthetized rats; and 5) nicotine-induced elevation of dopamine levels in the nucleus accumbens shell of freely moving rats. RESULTS: The PPAR-α agonists dose-dependently decreased nicotine self-administration and nicotine-induced reinstatement in rats and monkeys but did not alter food- or cocaine-reinforced operant behavior or the interoceptive effects of nicotine. The PPAR-α agonists also dose-dependently decreased nicotine-induced excitation of dopamine neurons in the ventral tegmental area and nicotine-induced elevations of dopamine levels in the nucleus accumbens shell of rats. The ability of WY14643 and methOEA to counteract the behavioral, electrophysiological, and neurochemical effects of nicotine was reversed by the PPAR-α antagonist 1-[(4-Chlorophenyl)methyl]-3-[(1,1-dimethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-Indole-2-propanoic acid (MK886). CONCLUSIONS: These findings indicate that PPAR-α might provide a valuable new target for antismoking medications.


Assuntos
Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , PPAR alfa/metabolismo , Reforço Psicológico , Recompensa , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Masculino , Microdiálise/métodos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Oligossacarídeos/farmacologia , Proliferadores de Peroxissomos/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Saimiri , Autoadministração , Área Tegmentar Ventral/citologia
15.
Addict Biol ; 16(3): 405-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21054689

RESUMO

Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Cocaína/farmacologia , Dronabinol/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Psicotrópicos/farmacologia , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Xantinas/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides , Injeções Intravenosas , Masculino , Abuso de Maconha/fisiopatologia , Abuso de Maconha/reabilitação , Microdiálise , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Pré-Sinápticos/efeitos dos fármacos , Reforço Psicológico , Saimiri , Autoadministração
16.
Br J Pharmacol ; 160(3): 443-53, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20590556

RESUMO

Adenosine and endocannabinoids are very ubiquitous non-classical neurotransmitters that exert a modulatory role on the transmission of other more 'classical' neurotransmitters. In this review we will focus on their common role as modulators of dopamine and glutamate neurotransmission in the striatum, the main input structure of the basal ganglia. We will pay particular attention to the role of adenosine A(2A) receptors and cannabinoid CB(1) receptors. Experimental results suggest that presynaptic CB(1) receptors interacting with A(2A) receptors in cortico-striatal glutamatergic terminals that make synaptic contact with dynorphinergic medium-sized spiny neurons (MSNs) are involved in the motor-depressant and addictive effects of cannabinoids. On the other hand, postsynaptic CB(1) receptors interacting with A(2A) and D(2) receptors in the dendritic spines of enkephalinergic MSNs and postsynaptic CB(1) receptors in the dendritic spines of dynorphinergic MSN are probably involved in the cataleptogenic effects of cannabinoids. These receptor interactions most probably depend on the existence of a variety of heteromers of A(2A), CB(1) and D(2) receptors in different elements of striatal spine modules. Drugs selective for the different striatal A(2A) and CB(1) receptor heteromers could be used for the treatment of neuropsychiatric disorders and drug addiction and they could provide effective drugs with fewer side effects than currently used drugs.


Assuntos
Corpo Estriado/fisiologia , Receptor Cross-Talk/fisiologia , Receptor A2A de Adenosina/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Animais , Catalepsia/fisiopatologia , Espinhas Dendríticas/fisiologia , Humanos , Modelos Biológicos , Multimerização Proteica , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transmissão Sináptica/fisiologia
17.
J Pharmacol Exp Ther ; 332(3): 1054-63, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19940104

RESUMO

sigma-1 Receptors are endoplasmic reticulum (ER) chaperones that are implicated in the neuroplasticity associated with psychostimulant abuse. We immunocytochemically examined the distribution of sigma-1 receptors in the brain of drug-naive rats and then examined the dynamics of sigma-1 receptors and other ER chaperones in specific brain subregions of rats that self-administered methamphetamine, received methamphetamine passively, or received only saline injections. sigma-1 Receptors were found to be expressed in moderate to high levels in the olfactory bulb, striatum, nucleus accumbens shell, olfactory tubercle, amygdala, hippocampus, red nucleus, ventral tegmental area, substantia nigra, and locus ceruleus. Methamphetamine, whether self-administered or passively received, significantly elevated ER chaperones including the sigma-1 receptor, BiP, and calreticulin in the ventral tegmental area and substantia nigra. In the olfactory bulb, however, only the sigma-1 receptor chaperone was increased, and this increase occurred only in rats that actively self-administered methamphetamine. Consistent with an increase in sigma-1 receptors, extracellular signal-regulated kinase was found to be activated and protein kinase A attenuated in the olfactory bulb of methamphetamine self-administering rats. sigma-1 Receptors in the olfactory bulb were found to be colocalized with dopamine D1 receptors. These results indicate that methamphetamine induces ER stress in the ventral tegmental area and substantia nigra in rats whether the drug is received actively or passively. However, the changes seen only in rats that actively self-administered methamphetamine suggest that D1 and sigma-1 receptors in the olfactory bulb might play an important role in the motivational conditioning/learning aspects of methamphetamine self-administration in the rat.


Assuntos
Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Retículo Endoplasmático/metabolismo , Metanfetamina/farmacologia , Chaperonas Moleculares/biossíntese , Receptores sigma/biossíntese , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Células CHO , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cricetinae , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Masculino , Metanfetamina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Autoadministração , Receptor Sigma-1
18.
Psychopharmacology (Berl) ; 203(2): 355-67, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18688601

RESUMO

RATIONALE: Adenosine receptors are involved in cocaine and methamphetamine discrimination and exposure to caffeine can affect behavioral effects of nicotine in rats. OBJECTIVES: Here we investigated the relative involvement of adenosine A(1) and A(2A) receptors in nicotine, cocaine, and methamphetamine discrimination, before and/or during chronic caffeine exposure. MATERIALS AND METHODS: The nonselective adenosine receptor antagonist caffeine, the A(1)-receptor antagonist cyclopentyltheophylline (CPT), and the A(2A)-receptor antagonist MSX-3 were evaluated in rats trained to discriminate 0.4 mg/kg nicotine from saline under a fixed-ratio schedule of food delivery. Effects of adenosine receptor antagonists were then compared in rats discriminating nicotine, methamphetamine, or cocaine from saline during chronic caffeine exposure in their drinking water. RESULTS: Caffeine, CPT, and MSX-3 partially generalized to nicotine and shifted nicotine dose-response curves leftwards. During chronic caffeine exposure, however, all three ligands failed to generalize to nicotine and failed to shift nicotine dose-response curves. In previous experiments, CPT and MSX-3 partially generalized to methamphetamine and cocaine and shifted dose-response curves leftwards. In the present experiments, CPT neither generalized nor shifted dose-response curves for methamphetamine or cocaine during chronic caffeine exposure. However, MSX-3 partially generalized to both psychostimulants and shifted their dose-response curves leftwards. Caffeine partially generalized to cocaine, but not methamphetamine, and shifted both dose-response curves leftwards. CONCLUSIONS: Both adenosine A(1) and A(2A) receptors are capable of modulating the discriminative-stimulus effects of nicotine. Chronic caffeine exposure produces complete tolerance to both A(1)- and A(2A)-mediated effects in nicotine-trained rats. In contrast, chronic caffeine exposure produces tolerance to adenosine A(1)-mediated, but not A(2A)-mediated, effects in methamphetamine- and cocaine-trained rats.


Assuntos
Cafeína/farmacologia , Cocaína/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Metanfetamina/farmacologia , Nicotina/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Agonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Animais , Cafeína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
19.
J Pharmacol Exp Ther ; 327(2): 482-90, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18725543

RESUMO

Emerging evidence suggests that the rewarding, abuse-related effects of nicotine are modulated by the endocannabinoid system of the brain. For example, pharmacological blockade or genetic deletion of cannabinoid CB(1) receptors can reduce or eliminate many abuse-related behavioral and neurochemical effects of nicotine. Furthermore, doses of Delta(9)-tetrahydrocannabinol and nicotine that are ineffective when given alone can induce conditioned place preference when given together. These previous studies have used systemically administered CB(1) receptor agonists and antagonists and gene deletion techniques, which affect cannabinoid CB(1) receptors throughout the brain. A more functionally selective way to alter endocannabinoid activity is to inhibit fatty acid amide hydrolase (FAAH), thereby magnifying and prolonging the effects of the endocannabinoid anandamide only when and where it is synthesized and released on demand. Here, we combined behavioral and neurochemical approaches to evaluate whether the FAAH inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester) could alter the abuse-related effects of nicotine in rats. We found that URB597, at a dose (0.3 mg/kg) that had no behavioral effects by itself, prevented development of nicotine-induced conditioned place preference (CPP) and acquisition of nicotine self-administration. URB597 also reduced nicotine-induced reinstatement in both CPP and self-administration models of relapse. Furthermore, in vivo microdialysis showed that URB597 reduced nicotine-induced dopamine elevations in the nucleus accumbens shell, the terminal area of the brain's mesolimbic reward system. These findings suggest that FAAH inhibition can counteract the addictive properties of nicotine and that FAAH may serve as a new target for development of medications for treatment of tobacco dependence.


Assuntos
Amidoidrolases/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Carbamatos/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Dopamina/análise , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Alcamidas Poli-Insaturadas/metabolismo , Tabagismo/tratamento farmacológico , Amidoidrolases/fisiologia , Animais , Endocanabinoides , Hidrólise , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/química , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Recompensa , Autoadministração , Tabagismo/enzimologia
20.
Bull Acad Natl Med ; 192(1): 45-56; discussion 56-7, 2008 Jan.
Artigo em Francês | MEDLINE | ID: mdl-18663981

RESUMO

Worldwide more than 3 million deaths a year are attributable to smoking, and tobacco use is on the rise in developing countries. Consequently, smoking is one of the few causes of mortality that is increasing, with deaths projected to reach 10 million annually in 30-40 years. Cannabinoids, which are usually used in the form of marijuana, have become the most frequently used illicit drugs, but there is no pharmacological treatment for marijuana dependence. Although the dopaminergic system plays a critical role in reinforcing the effects of drugs of abuse, other neurotransmitter systems are also involved. Here we review recent results obtained with antagonists targeting cannabinoid CB1 receptors, dopamine D3 receptors and opioid receptors, that directly or indirectly modulate dopaminergic transmission. These promising approaches warrant clinical trials in the treatment of tobacco and marijuana dependence.


Assuntos
Abuso de Maconha/tratamento farmacológico , Antagonistas de Entorpecentes/farmacologia , Tabagismo/tratamento farmacológico , Animais , Humanos , Modelos Animais , Antagonistas de Entorpecentes/uso terapêutico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA