Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 207: 117776, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758439

RESUMO

Surface water runoff can export pesticides from agricultural fields into adjacent aquatic ecosystems, where they may pose adverse effects to organisms. Constructed wetlands (CWs) are widely used to treat agricultural runoff contaminated by pesticides, but the removal of hydrophilic pesticides is usually low. In this study, we suggest superabsorbent polymer (SAP), a cross-linked hydrophilic polymer, as a supplement to substrates of CWs and tested the hypothesis that SAP results in an enhanced removal of hydrophilic pesticides. Therefore, batch experiments were conducted to study the retention capacity of water-saturated SAP (w-SAP) for several hydrophilic pesticides. Retention of the pesticides on w-SAP was related to the ionization state and water solubility of the pesticides. The retention of neutral pesticides, imidacloprid, metalaxyl and propiconazole, was about 20% higher than that measured for anionic pesticides, bentazone, glyphosate and MCPA. The retention of the pesticides by w-SAP mainly resulted from their distribution in the gel-water phase of w-SAP, while less water soluble pesticides might have also been adsorbed on the molecular backbone of SAP. Furthermore, we tested the efficacy of w-SAP for treatment of runoff water contaminated by pesticides in lab-scale horizontal subsurface flow CWs. SAP in CWs improved the removal of the pesticides, including the recalcitrant ones. The removal enhancement was owing to the increase of hydraulic retention time and improvement of biodegradation. The removal of the pesticides in SAP containing CWs was > 93% for MCPA, glyphosate, and propiconazole, 62 - 99% for imidacloprid, 50 - 84% for metalaxyl, and 38 - 73% for bentazone. In the control gravel CWs, the removal was > 98% for glyphosate, generally > 83% for MCPA and propiconazole, 46 - 98% for imidacloprid, 32 - 97% for metalaxyl, and 9 - 96% for bentazone.


Assuntos
Praguicidas , Poluentes Químicos da Água , Ecossistema , Praguicidas/análise , Polímeros , Poluentes Químicos da Água/análise , Áreas Alagadas
2.
Sci Total Environ ; 778: 146114, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030358

RESUMO

Pesticides in agricultural surface water runoff cause a major threat to freshwater systems. Installation of filter systems or constructed wetlands in areas of preferential run-off is a possible measure for pesticides abatement. To develop such systems, combinations of filter materials suitable for retention of both hydrophilic and hydrophobic organic pesticides were tested for pesticide removal in planted microcosms. The retention of six pesticides frequently detected in surface waters (bentazone, MCPA, metalaxyl, propiconazole, pencycuron, and imidacloprid) was evaluated in unplanted and planted pot experiments with novel bed material mixtures consisting of pumice, vermiculite, water super-absorbent polymer (SAP) for retention of ionic and water soluble pesticides, and synthetic hydrophobic wool for adsorption of hydrophobic pesticides. The novel materials were compared to soil with high organic matter content. The highest retention of the pesticides was observed in the soil, with a considerable translocation of pesticides into the plants, and low leaching potential, in particular for the hydrophobic compounds. However, due to the high retention of pesticides in soil, environmental risks related to their long term mobilization cannot be excluded. Mixtures of pumice and vermiculite with SAP resulted in high retention of i) water and ii) both hydrophilic and hydrophobic pesticides but with much lower leaching potential compared to the mineral systems without SAP. Mixtures of such materials may provide near natural treatment options in riparian strips and also for treatment of rainwater runoff without the need for water containment systems.

3.
Appl Microbiol Biotechnol ; 104(4): 1809-1820, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31867694

RESUMO

Constructed wetlands (CWs) are effective ecological remediation technologies for various contaminated water bodies. Here, we queried for benzene-degrading microbes in a horizontal subsurface flow CW with reducing conditions in the pore water and fed with benzene-contaminated groundwater. For identification of relevant microbes, we employed in situ microcosms (BACTRAPs, which are made from granulated activated carbon) coupled with 13C-stable isotope probing and Illumina sequencing of 16S rRNA amplicons. A significant incorporation of 13C was detected in RNA isolated from BACTRAPs loaded with 13C-benzene and exposed in the CW for 28 days. A shorter incubation time did not result in detectable 13C incorporation. After 28 days, members from four genera, namely Dechloromonas, Hydrogenophaga, and Zoogloea from the Betaproteobacteria and Arcobacter from the Epsilonproteobacteria were significantly labeled with 13C and were abundant in the bacterial community on the BACTRAPs. Sequences affiliated to Geobacter were also numerous on the BACTRAPs but apparently those microbes did not metabolize benzene as no 13C label incorporation was detected. Instead, they may have metabolized plant-derived organic compounds while using the BACTRAPs as electron sink. In representative wetland samples, sequences affiliated with Dechloromonas, Zoogloea, and Hydrogenophaga were present at relative proportions of up to a few percent. Sequences affiliated with Arcobacter were present at < 0.01% in wetland samples. In conclusion, we identified microbes of likely significance for benzene degradation in a CW used for remediation of contaminated water.


Assuntos
Benzeno/metabolismo , Proteobactérias/classificação , Proteobactérias/metabolismo , Áreas Alagadas , Isótopos de Carbono , Proteobactérias/isolamento & purificação , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
4.
Environ Sci Eur ; 30(1): 51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613459

RESUMO

All chemicals form non-extractable residues (NER) to various extents in environmental media like soil, sediment, plants and animals. NER can be quantified in environmental fate studies using isotope-labeled (such as 14C or 13C) tracer compounds. Previous NER definitions have led to a mismatch of legislation and state of knowledge in research: the residues are assumed to be either irreversibly bound degradation products or at least parts of these residues can be released. In the latter assumption, soils and sediments are a long-term source of slowly released residues. We here present a conceptual experimental and modeling approach to characterize non-extractable residues and provide guidance how they should be considered in the persistence assessment of chemicals and pesticides. Three types of NER can be experimentally discriminated: sequestered and entrapped residues (type I), containing either the parent substance or xenobiotic transformation products or both and having the potential to be released, which has indeed been observed. Type II NER are residues that are covalently bound to organic matter in soils or sediments or to biological tissue in organisms and that are considered being strongly bound with very low remobilization rates like that of humic matter degradation rates. Type III NER comprises biogenic NER (bioNER) after degradation of the xenobiotic chemical and anabolic formation of natural biomolecules like amino acids and phospholipids, and other biomass compounds. We developed the microbial turnover to biomass (MTB) model to predict the formation of bioNER based on the structural properties of chemicals. Further, we proposed an extraction sequence to obtain a matrix containing only NER. Finally, we summarized experimental methods to distinguish the three NER types. Type I NER and type II NER should be considered as potentially remobilizable residues in persistence assessment but the probability of type II release is much lower than that of type I NER, i.e., type II NER in soil are "operationally spoken" irreversibly bound and can be released only in minute amounts and at very slow rates, if at all. The potential of remobilization can be evaluated by chemical, physical and biological methods. BioNER are of no environmental concern and, therefore, can be assessed as such in persistence assessment. The general concept presented is to consider the total amount of NER minus potential bioNER as the amount of xenoNER, type I + II. If a clear differentiation of type I and type II is possible, for the calculation of half-life type I NER are considered as not degraded parent substance or transformation product(s). On the contrary, type II NER may generally be considered as (at least temporarily) removed. Providing proof for type II NER is the most critical issue in NER assessment and requires additional research. If no characterization and additional information on NER are available, it is recommended to assess the total amount as potentially remobilizable. We propose our unified approach of NER characterization and evaluation to be implemented into the persistence and environmental hazard assessment strategies for REACH chemicals and biocides, human and veterinary pharmaceuticals, and pesticides, irrespective of the different regulatory frameworks.

5.
J Hazard Mater ; 327: 206-215, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28068645

RESUMO

Tar oil contamination is a major environmental concern due to health impacts of polycyclic aromatic hydrocarbons (PAH) and the difficulty of reaching acceptable remediation end-points. Six tar oil-contaminated soils with different industrial histories were compared to investigate contamination characteristics by black particles. Here we provide a simple method tested on 6 soils to visualize and identify large amounts of black particles (BP) as either solid aggregates of resinified and weathered tar oil or various wood/coke/coal-like materials derived from the contamination history. These materials contain 2-10 times higher PAH concentrations than the average soil and were dominantly found in the sand fraction containing 42-86% of the total PAH. The PAH contamination in the different granulometric fractions was directly proportional to the respective total organic carbon content, since the PAH were associated to the carbonaceous particulate materials. Significantly lower (bio)availability of PAH associated to these carbonaceous phases is widely recognized, thus limiting the efficiency of remediation techniques. We provide a conceptual model of the limited mass transfer of PAH from resinated tar oil phases to the water phase and emphasize the options to physically separate BP based on their lower bulk density and slower settling velocity.

6.
Appl Microbiol Biotechnol ; 99(23): 10323-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26264137

RESUMO

Slow sand filtration (SSF) is an effective low-tech water treatment method for pathogen and particle removal. Yet despite its application for centuries, it has been uncertain to which extent pathogenic microbes are removed by mechanical filtration or due to ecological interactions such as grazing and competition for nutrients. In this study, we quantified the removal of bacterial faecal indicators, Escherichia coli and Enterococcus faecalis, from secondary effluent of a wastewater treatment plant and analysed the microbial community composition in compartments of laboratory model SSF columns. The columns were packed with different sand grain sizes and eliminated 1.6-2.3 log units of faecal indicators, which translated into effluents of bathing water quality according to the EU directive (<500 colony forming units of E. coli per 100 ml) for columns with small grain size. Most of that removal occurred in the upper filter area, the Schmutzdecke. Within that same zone, total bacterial numbers increased however, thus suggesting a specific elimination of the faecal indicators. The analysis of the microbial communities also revealed that some taxa were removed more from the wastewater than others. These results accentuate the contribution of biological mechanisms to water purification in SSF.


Assuntos
Enterococcus faecalis/isolamento & purificação , Escherichia coli/isolamento & purificação , Filtração/métodos , Microbiologia da Água , Poluentes da Água , Purificação da Água/métodos , Carga Bacteriana , Biota
7.
Appl Microbiol Biotechnol ; 99(2): 957-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25194840

RESUMO

Natural attenuation maybe a cost-efficient option for bioremediation of contaminated sites but requires knowledge about the activity of degrading microbes under in situ conditions. In order to link microbial activity to the spatial distribution of contaminant degraders, we combined the recently improved in situ microcosm approach, so-called 'direct-push bacterial trap' (DP-BACTRAP), with nano-scale secondary ion mass spectrometry (NanoSIMS) analysis on samples from contaminated constructed wetlands. This approach is based on initially sterile microcosms amended with (13)C-labelled benzene as a source of carbon and energy for microorganisms. The microcosms were introduced directly in the constructed wetland, where they were colonised by indigenous microorganisms from the sediment. After incubation in the field, the samples were analysed by NanoSIMS, scanning electron microscopy (SEM) and fluorescence microscopy in order to visualise (13)C-labelled microbial biomass on undisturbed samples from the microcosms. With the approach developed, we successfully visualised benzene-degrading microbes on solid materials with high surface area by means of NanoSIMS. Moreover, we could demonstrate the feasibility of NanoSIMS analysis of unembedded porous media with a highly complex topography, which was frequently reasoned to not lead to sufficient results.


Assuntos
Bactérias/metabolismo , Benzeno/química , Biomassa , Biodegradação Ambiental , Hibridização in Situ Fluorescente , Áreas Alagadas
8.
Chemosphere ; 117: 178-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25025478

RESUMO

A hydroponic plant root mat filter (HPRMF) was compared over 7months with a horizontal subsurface flow constructed wetland (HSSF CW) regarding the removal of perchloroethene (PCE) (about 2 mg L(-1)) from a sulfate- (850 mg L(-1)) and ammonia-rich (50 mg L(-1)) groundwater with a low TOC content. At a mean area specific inflow PCE load of 56 mg m(-2)d(-1), after 4m from inlet, the mean PCE removal during summer time reached 97% in the HPRMF and almost 100% in the HSSF CW. Within the first 2m in the HSSF CW metabolites like dichloroethenes, vinyl chloride and ethene accumulated, their concentrations decreased further along the flow path. Moreover, the tidal operation (a 7-d cycle) in the HSSFCW decreased the accumulation of PCE metabolites within the first 1m of the bed. The carcinogenic degradation metabolite vinyl chloride was not detected in the HPRMF. The smaller accumulation of the degradation metabolites in the HPRMF correlated with its higher redox potential. It can be concluded from this study that HPRMF appears an interesting alternative for special water treatment tasks and that tidal operation will show some positive effects on the removal of the accumulated PCE metabolites in HSSF CW.


Assuntos
Recuperação e Remediação Ambiental/métodos , Poaceae/metabolismo , Tetracloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/prevenção & controle , Purificação da Água/métodos , Áreas Alagadas , Amônia/metabolismo , Biodegradação Ambiental , Filtração , Água Subterrânea/análise , Água Subterrânea/química , Hidroponia , Projetos Piloto , Raízes de Plantas/metabolismo , Sulfatos/metabolismo , Movimentos da Água
9.
J Hazard Mater ; 209-210: 510-5, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22326241

RESUMO

In order to evaluate technology options for the treatment of groundwater contaminated with benzene and MTBE in constructed wetlands (CWs), a scarcely applied plant root mat system and two horizontal subsurface-flow (HSSF) CWs were investigated. The inflow load of benzene and MTBE were 188-522 and 31-90 mg d(-1)m(-2), respectively. Higher removal efficiencies were obtained during summer in all systems. The benzene removal efficiencies were 0-33%, 24-100% and 22-100% in the unplanted HSSF-CW, planted HSSF-CW and the plant root mat, respectively; the MTBE removal efficiencies amounted to 0-33%, 16-93% and 8-93% in the unplanted HSSF-CW, planted HSSF-CW and the plant root mat, respectively. The volatilisation rates in the plant root mat amounted to 7.24 and 2.32 mg d(-1)m(-2) for benzene and MTBE, which is equivalent to 3.0% and 15.2% of the total removal. The volatilisation rates in the HSSF-CW reached 2.59 and 1.07 mg d(-1)m(-2), corresponding to 1.1% and 6.1% of the total removal of benzene and MTBE, respectively. The results indicate that plant root mats are an interesting option for the treatment of waters polluted with benzene and MTBE under moderate temperatures conditions.


Assuntos
Benzeno/isolamento & purificação , Água Subterrânea/química , Éteres Metílicos/isolamento & purificação , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Áreas Alagadas , Oxirredução , Projetos Piloto , Volatilização
10.
J Environ Sci (China) ; 22(2): 192-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20397405

RESUMO

Coke plant effluents with high contents of organic compounds are mainly treated by biological aerobic fermentation after physical pre-treatment. In this study, a brown coal condensate wastewater from a low temperature coking process was fermented under methanogenic conditions in discontinuous experiments. By this fermentation, acetate, propionate, and the main polyphenolic compounds (catechol, resorcinol and hydroquinone) were degraded to a level below the detection limit. The COD was reduced by 72% with a residual concentration of 2.1 g/L. This anaerobic fermented wastewater had a residual BOD5 of 0.66 g/L and 2.2 L CH4 were formed per litre of wastewater. An abiotic pre-treatment for this wastewater with air had a negative effect on the COD reduction and decrease of colour on the methanogenic fermentation due to the autoxidation of polyphenolic compounds to humic-like compounds. This study showed that methanogenic fermentations in the treatment sequence of brown coal coking wastewaters could reduce energy consumption for aeration in further treatment processes and had the potential for a better effluent quality due to a less formation of recalcitrant humic-like compounds.


Assuntos
Carvão Mineral , Fermentação , Resíduos Industriais , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos , Ar , Fontes Geradoras de Energia , Fatores de Tempo , Poluentes Químicos da Água/metabolismo
11.
Environ Toxicol Chem ; 24(1): 51-60, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15683167

RESUMO

Intrinsic biodegradation of benzene and toluene in a heavily contaminated aquifer at the site of a former hydrogenation plant was investigated by means of isotope fractionation processes. The carbon isotope compositions of benzene and toluene were monitored in two campaigns within a time period of 12 months to assess the extent of the in situ biodegradation and the stability of the plume over time. The Rayleigh model, applied to calculate the extent of biodegradation and residual theoretical concentrations of toluene, showed that in situ biodegradation was a relevant attenuation process. The biodegradation rate constant for toluene was estimated to be k = 5.7+/-0.5 microM/d in the groundwater flow path downstream of the source area. The spatial distribution of the carbon isotope composition of benzene indicated that in situ biodegradation occurred at marginal zones of the plume where concentrations were lower than 30 mg/L. The vertical structure of the benzene plume provided evidence for in situ degradation processes at the upper and lower fringes of the plume. The results show that isotope fractionation can be used to quantify the extent of microbial in situ degradation in contaminated aquifers and to develop conceptual models for natural attenuation approaches.


Assuntos
Derivados de Benzeno/análise , Benzeno/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Carbono/análise , Isótopos de Carbono/análise , Radioisótopos de Carbono , Gasolina , Alemanha , Modelos Químicos , Fatores de Tempo , Tolueno/análise , Xilenos/análise
12.
Appl Microbiol Biotechnol ; 66(3): 285-90, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15480634

RESUMO

The molecular mechanism of the unique cis to trans isomerization of unsaturated fatty acids in the solvent-tolerant bacterium Pseudomonas putida S12 was studied. For this purpose, the carbon isotope fractionation of the cis-trans isomerase was estimated. In resting cell experiments, addition of 3-nitrotoluene for activation of the cis-trans isomerase resulted in the conversion of the cis-unsaturated fatty acids into the corresponding trans isomers. For the conversion of C16:1 cis to its corresponding trans isomer, a significant fractionation was measured. The intensity of this fractionation strongly depended on the rate of cis-trans isomerization and the added concentration of 3-nitrotoluene, respectively. The presence of a significant fractionation provides additional indication for a transition from the sp carbon linkage of the cis-double bond to an intermediate sp3 within an enzyme-substrate complex. The sp2 linkage is reconstituted after rotation to the trans configuration has occurred. As cytochrome c plays a major role in the catabolism of Cti polypeptide, these findings favour a mechanism for the enzyme in which electrophilic iron (Fe(3+)), provided by a heme domain, removes an electron of the cis double bond thereby transferring the sp2 linkage into sp3.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Pseudomonas putida/metabolismo , cis-trans-Isomerases/metabolismo , Sítios de Ligação , Isótopos de Carbono , Citocromos c/metabolismo , Isomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA