Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(3)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36766770

RESUMO

Lipid metabolic disturbances are associated with several diseases, such as type 2 diabetes or malignancy. In the last two decades, high-performance mass spectrometry-based lipidomics has emerged as a valuable tool in various fields of biology. However, the evaluation of macroscopic tissue homogenates leaves often undiscovered the differences arising from micron-scale heterogeneity. Therefore, in this work, we developed a novel laser microdissection-coupled shotgun lipidomic platform, which combines quantitative and broad-range lipidome analysis with reasonable spatial resolution. The multistep approach involves the preparation of successive cryosections from tissue samples, cross-referencing of native and stained images, laser microdissection of regions of interest, in situ lipid extraction, and quantitative shotgun lipidomics. We used mouse liver and kidney as well as a 2D cell culture model to validate the novel workflow in terms of extraction efficiency, reproducibility, and linearity of quantification. We established that the limit of dissectible sample area corresponds to about ten cells while maintaining good lipidome coverage. We demonstrate the performance of the method in recognizing tissue heterogeneity on the example of a mouse hippocampus. By providing topological mapping of lipid metabolism, the novel platform might help to uncover region-specific lipidomic alterations in complex samples, including tumors.


Assuntos
Diabetes Mellitus Tipo 2 , Lipidômica , Animais , Camundongos , Lipídeos/análise , Microdissecção , Reprodutibilidade dos Testes , Lasers
2.
Methods Mol Biol ; 2003: 529-561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31218632

RESUMO

Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin-label EPR spectroscopy is the technique of choice to characterize the protein solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin-labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intramembranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to a so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intramembranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature (see ref. Marsh, Eur Biophys J 39:513-525, 2010 for a recent review), here we focus more on how to spin label model membranes and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a previous methodological paper (Marsh, Methods 46:83-96, 2008). The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.


Assuntos
Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Marcadores de Spin
3.
Eur J Pharm Sci ; 123: 228-240, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031862

RESUMO

Nanoparticles targeting transporters of the blood-brain barrier (BBB) are promising candidates to increase the brain penetration of biopharmacons. Solute carriers (SLC) are expressed at high levels in brain endothelial cells and show a specific pattern at the BBB. The aim of our study was to test glutathione and ligands of SLC transporters as single or dual BBB targeting molecules for nanovesicles. High mRNA expression levels for hexose and neutral amino acid transporting SLCs were found in isolated rat brain microvessels and our rat primary cell based co-culture BBB model. Niosomes were derivatized with glutathione and SLC ligands glucopyranose and alanine. Serum albumin complexed with Evans blue (67 kDa), which has a very low BBB penetration, was selected as a cargo. The presence of targeting ligands on niosomes, especially dual labeling, increased the uptake of the cargo molecule in cultured brain endothelial cells. This cellular uptake was temperature dependent and could be decreased with a metabolic inhibitor and endocytosis blockers filipin and cytochalasin D. Making the negative surface charge of brain endothelial cells more positive with a cationic lipid or digesting the glycocalyx with neuraminidase elevated the uptake of the cargo after treatment with targeted nanocarriers. Treatment with niosomes increased plasma membrane fluidity, suggesting the fusion of nanovesicles with endothelial cell membranes. Targeting ligands elevated the permeability of the cargo across the BBB in the culture model and in mice, and dual-ligand decoration of niosomes was more effective than single ligand labeling. Our data indicate that dual labeling with ligands of multiple SLC transporters can potentially be exploited for BBB targeting of nanoparticles.


Assuntos
Alanina/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Azul Evans/metabolismo , Glucose/metabolismo , Lipídeos/química , Nanopartículas , Albumina Sérica/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Alanina/química , Animais , Transporte Biológico , Barreira Hematoencefálica/citologia , Células Cultivadas , Técnicas de Cocultura , Composição de Medicamentos , Azul Evans/administração & dosagem , Azul Evans/química , Feminino , Glucose/análogos & derivados , Glucose/química , Glutationa/química , Glutationa/metabolismo , Ligantes , Lipossomos , Masculino , Camundongos Nus , Ratos Wistar , Albumina Sérica/administração & dosagem , Albumina Sérica/química , Proteínas Carreadoras de Solutos/genética
4.
Curr Pharm Des ; 23(28): 4198-4205, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28748755

RESUMO

BACKGROUND: The blood-brain barrier restricts drug penetration to the central nervous system. Targeted nanocarriers are new potential tools to increase the brain entry of drugs. Ligands of endogenous transporters of the blood-brain barrier can be used as targeting vectors for brain delivery of nanoparticles. OBJECTIVE: We tested biotin-labeled solid nanoparticles for the first time and compared to biotinylated glutathione- labeled nanoparticles in brain endothelial cells. METHOD: Neutravidin coated fluorescent polystyrene nanoparticles were derivatized with biotin and biotinylated glutathione. As a human in vitro blood-brain barrier model hCMEC/D3 brain endothelial cells were used. Cell viability by MTT test, uptake and transfer of the nanoparticles across the endothelial monolayers were measured. The uptake of the nanoparticles was visualized by confocal microscopy. RESULTS: The tested nanoparticles caused no change in cell viability. The uptake of biotin- and glutathione-labeled nanoparticles by brain endothelial cells was time-dependent and significantly higher compared to non-labeled nanoparticles. The penetration of the glutathione-labeled nanoparticles across the endothelial monolayer was higher than the biotin-targeted ones. Biotin- and glutathione-targeted nanoparticles were visualized in hCMEC/D3 cells. We verified that hCMEC/D3 express mRNA for sodium-dependent multivitamin transporter (SMVT/SLC5A6) responsible for the blood-brain barrier transport of biotin. CONCLUSION: Biotin as a ligand increased the uptake and the transfer of nanoparticles across brain endothelial cells. Biotinylated glutathione could further increase nanoparticle permeability through endothelial monolayers supporting its use as a brain targeting vector.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Animais , Transporte Biológico , Biotina/administração & dosagem , Sobrevivência Celular , Células Endoteliais/metabolismo , Glutationa/administração & dosagem , Humanos , Nanopartículas , Distribuição Tecidual
5.
Sci Rep ; 7: 45309, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345665

RESUMO

Rotary enzymes are complex, highly challenging biomolecular machines whose biochemical working mechanism involves intersubunit rotation. The true intrinsic rate of rotation of any rotary enzyme is not known in a native, unmodified state. Here we use the effect of an oscillating electric (AC) field on the biochemical activity of a rotary enzyme, the vacuolar proton-ATPase (V-ATPase), to directly measure its mean rate of rotation in its native membrane environment, without any genetic, chemical or mechanical modification of the enzyme, for the first time. The results suggest that a transmembrane AC field is able to synchronise the steps of ion-pumping in individual enzymes via a hold-and-release mechanism, which opens up the possibility of biotechnological exploitation. Our approach is likely to work for other transmembrane ion-transporting assemblies, not only rotary enzymes, to determine intrinsic in situ rates of ion pumping.


Assuntos
ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Prótons , Rotação
6.
Methods Mol Biol ; 974: 297-328, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23404282

RESUMO

Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a recent methodological paper [Marsh (Methods 46:83-96, 2008)]. The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Marcadores de Spin , Animais , Bovinos , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Análise dos Mínimos Quadrados , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Termodinâmica
7.
Biochemistry ; 42(14): 4292-9, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12680783

RESUMO

The role of phosphatidylglycerol (PG) in protein-lipid interactions and membrane dynamics has been studied in the thylakoids of wild type and manipulated tobacco plants transformed with complementary DNAs for glycerol-3-phosphate acyltransferases (GPATs) from squash and Arabidopsis. The expression of the foreign enzymes resulted in the level of saturation of the PG molecules being higher in the squash and lower in the Arabidopsis transformants, as compared with the level in wild-type tobacco. For the analysis of fatty acyl chain dynamics in the thylakoid membranes, the nu(sym)CH(2) vibration bands of the infrared specta were decomposed into two components, corresponding to ordered and disordered fatty acyl chain segments. With this approach, it was shown that in squash GPAT-transformed tobacco thylakoids a rigid lipid domain exists below 25 degrees C. Above 25 degrees C, the dynamics of all thylakoid membranes were very similar, regardless of the manipulations. PG seems to tune the dynamics at the protein-lipid interface rather than to affect the structure of the proteins directly. Above 50 degrees C, the frequencies of the disordered nu(sym)CH(2) component bands were decreased. This lipid-related phenomenon correlated with protein denaturing. It is demonstrated that the protein aggregation appearing upon heat denaturing changes the conformational distribution of the disordered lipid population. The data also reveal that the protein stability does not depend on the fatty acid composition of the PG molecules; other lipids should provide the environment governing the protein stability in the thylakoid membrane. This is the first such detailed analysis of the infrared spectra of biological membranes that permits a differentiation between structurally different lipid populations within a membrane.


Assuntos
Ácidos Graxos/química , Engenharia Genética , Nicotiana/química , Fosfatidilgliceróis/química , Tilacoides/química , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Proc Natl Acad Sci U S A ; 99(19): 12149-54, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12213965

RESUMO

The development of the thylakoid membrane was studied during illumination of dark-grown barley seedlings by using biochemical methods, and Fourier transform infrared and spin label electron paramagnetic resonance spectroscopic techniques. Correlated, gross changes in the secondary structure of membrane proteins, conformation, composition, and dynamics of lipid acyl chains, SDS/PAGE pattern, and thermally induced structural alterations show that greening is accompanied with the reorganization of membrane protein assemblies and the protein-lipid interface. Changes in overall membrane fluidity and noncovalent protein-lipid interactions are not monotonic, despite the monotonic accumulation of chlorophyll, LHCII [light-harvesting chlorophyll a/b-binding (polypeptides) associated with photosystem II] apoproteins, and 18:3 fatty acids that follow a similar time course with highest rates between 12-24 h of greening. The 18:3 fatty acid content increases 2.8-fold during greening. This appears to both compensate for lipid immobilization by membrane proteins and facilitate packing of larger protein assemblies. The increase in the amount of protein-solvating immobile lipids, which reaches a maximum at 12 h, is caused by 40% decrease in the membranous mean diameter of protein assemblies at constant protein/lipid mass ratio. Alterations in the SDS/PAGE pattern are most significant between 6-24 h. The size of membrane protein assemblies increases approximately 4.5-fold over the 12-48-h period, likely caused by the 2-fold gain in LHCII apoproteins. The thermal stability of thylakoid membrane proteins increases monotonically, as detected by an increasing temperature of partial protein unfolding during greening. Our data suggest that a structural coupling between major protein and lipid components develops during greening. This protein-lipid interaction is required for the development and protection of thylakoid membrane protein assemblies.


Assuntos
Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Fenômenos Biofísicos , Biofísica , Estabilidade de Medicamentos , Espectroscopia de Ressonância de Spin Eletrônica , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Hordeum/efeitos da radiação , Temperatura Alta , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Plantas/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Tilacoides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA