Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cancer Biol Med ; 19(11)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36476337

RESUMO

Lung cancer remains the leading cause of cancer-associated mortality worldwide, but with the emergence of oncogene targeted therapies, treatment options have tremendously improved. Owing to their biological relevance, members of the ERBB receptor family, including the EGF receptor (EGFR), HER2, HER3 and HER4, are among the best studied oncogenic drivers. Activating EGFR mutations are frequently observed in non-small cell lung cancer (NSCLC), and small molecule tyrosine kinase inhibitors (TKIs) are the established first line treatment option for patients whose tumors bear "typical/classical" EGFR mutations (exon 19 deletions, L858R point mutations). Additionally, new TKIs are rapidly evolving with better efficacy to overcome primary and secondary treatment resistance (e.g., that due to T790M or C797S resistance mutations). Some atypical EGFR mutations, such as the most frequent exon 20 insertions, exhibit relative resistance to earlier generation TKIs through steric hindrance. In this subgroup, newer TKIs, such as mobocertinib and the bi-specific antibody amivantamab have recently been approved, whereas less frequent atypical EGFR mutations remain understudied. In contrast to EGFR, HER2 has long remained a challenging target, but better structural understanding has led to the development of newer generations of TKIs. The recent FDA approval of the antibody-drug conjugate trastuzumab-deruxtecan for pretreated patients with HER2 mutant NSCLC has been an important therapeutic breakthrough. HER3 and HER4 also exert oncogenic potential, and targeted treatment approaches are being developed, particularly for HER3. Overall, strategies to inhibit the oncogenic function of ERBB receptors in NSCLC are currently evolving at an unprecedented pace; therefore, this review summarizes current treatment standards and discusses the outlook for future developments.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptores ErbB/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Cancer Cell ; 40(10): 1128-1144.e8, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36150391

RESUMO

KRAS-LKB1 (KL) mutant lung cancers silence STING owing to intrinsic mitochondrial dysfunction, resulting in T cell exclusion and resistance to programmed cell death (ligand) 1 (PD-[L]1) blockade. Here we discover that KL cells also minimize intracellular accumulation of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) to further avoid downstream STING and STAT1 activation. An unbiased screen to co-opt this vulnerability reveals that transient MPS1 inhibition (MPS1i) potently re-engages this pathway in KL cells via micronuclei generation. This effect is markedly amplified by epigenetic de-repression of STING and only requires pulse MPS1i treatment, creating a therapeutic window compared with non-dividing cells. A single course of decitabine treatment followed by pulse MPS1i therapy restores T cell infiltration in vivo, enhances anti-PD-1 efficacy, and results in a durable response without evidence of significant toxicity.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Decitabina , Genes ras , Humanos , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
3.
Clin Cancer Res ; 28(8): 1640-1650, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35091439

RESUMO

PURPOSE: Activating missense mutations of KRAS are the most frequent oncogenic driver events in lung adenocarcinoma (LUAD). However, KRAS isoforms are highly heterogeneous, and data on the potential isoform-dependent therapeutic vulnerabilities are still lacking. EXPERIMENTAL DESIGN: We developed an isogenic cell-based platform to compare the oncogenic properties and specific therapeutic actionability of KRAS-mutant isoforms. In parallel, we analyzed clinicopathologic and genomic data from 3,560 patients with non-small cell lung cancer (NSCLC) to survey allele-specific features associated with oncogenic KRAS mutations. RESULTS: In isogenic cell lines expressing different mutant KRAS isoforms, we identified isoform-specific biochemical, biological, and oncogenic properties both in vitro and in vivo. These exclusive features correlated with different therapeutic responses to MEK inhibitors, with KRAS G12C and Q61H mutants being more sensitive compared with other isoforms. In vivo, combined KRAS G12C and MEK inhibition was more effective than either drug alone. Among patients with NSCLCs that underwent comprehensive tumor genomic profiling, STK11 and ATM mutations were significantly enriched among tumors harboring KRAS G12C, G12A, and G12V mutations. KEAP1 mutation was significantly enriched among KRAS G12C and KRAS G13X LUADs. KRAS G13X-mutated tumors had the highest frequency of concurrent STK11 and KEAP1 mutations. Transcriptomic profiling revealed unique patterns of gene expression in each KRAS isoform, compared with KRAS wild-type tumors. CONCLUSIONS: This study demonstrates that KRAS isoforms are highly heterogeneous in terms of concurrent genomic alterations and gene-expression profiles, and that stratification based on KRAS alleles should be considered in the design of future clinical trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Fator 2 Relacionado a NF-E2/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
Mol Cancer Ther ; 21(2): 322-335, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789563

RESUMO

MET-targeted therapies are clinically effective in MET-amplified and MET exon 14 deletion mutant (METex14) non-small cell lung cancers (NSCLCs), but their efficacy is limited by the development of drug resistance. Structurally distinct MET tyrosine kinase inhibitors (TKIs) (type I/II) have been developed or are under clinical evaluation, which may overcome MET-mediated drug resistance mechanisms. In this study, we assess secondary MET mutations likely to emerge in response to treatment with single-agent or combinations of type I/type II MET TKIs using TPR-MET transformed Ba/F3 cell mutagenesis assays. We found that these inhibitors gave rise to distinct secondary MET mutant profiles. However, a combination of type I/II TKI inhibitors (capmatinib and merestinib) yielded no resistant clones in vitro The combination of capmatinib/merestinib was evaluated in vivo and led to a significant reduction in tumor outgrowth compared with either MET inhibitor alone. Our findings demonstrate in vitro and in vivo that a simultaneous treatment with a type I and type II MET TKI may be a clinically viable approach to delay and/or diminish the emergence of on target MET-mediated drug-resistance mutations.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Simulação de Acoplamento Molecular/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia
5.
Cancer Res ; 82(1): 130-141, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34548332

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are the standard-of-care treatment for EGFR-mutant non-small cell lung cancers (NSCLC). However, most patients develop acquired drug resistance to EGFR TKIs. HER3 is a unique pseudokinase member of the ERBB family that functions by dimerizing with other ERBB family members (EGFR and HER2) and is frequently overexpressed in EGFR-mutant NSCLC. Although EGFR TKI resistance mechanisms do not lead to alterations in HER3, we hypothesized that targeting HER3 might improve efficacy of EGFR TKI. HER3-DXd is an antibody-drug conjugate (ADC) comprised of HER3-targeting antibody linked to a topoisomerase I inhibitor currently in clinical development. In this study, we evaluated the efficacy of HER3-DXd across a series of EGFR inhibitor-resistant, patient-derived xenografts and observed it to be broadly effective in HER3-expressing cancers. We further developed a preclinical strategy to enhance the efficacy of HER3-DXd through osimertinib pretreatment, which increased membrane expression of HER3 and led to enhanced internalization and efficacy of HER3-DXd. The combination of osimertinib and HER3-DXd may be an effective treatment approach and should be evaluated in future clinical trials in EGFR-mutant NSCLC patients. SIGNIFICANCE: EGFR inhibition leads to increased HER3 membrane expression and promotes HER3-DXd ADC internalization and efficacy, supporting the clinical development of the EGFR inhibitor/HER3-DXd combination in EGFR-mutant lung cancer.See related commentary by Lim et al., p. 18.


Assuntos
Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Imunoconjugados/metabolismo , Receptor ErbB-3/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Camundongos
6.
Front Cell Dev Biol ; 9: 773101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869372

RESUMO

Cancers that are histologically defined as the same type of cancer often need a distinct therapy based on underlying heterogeneity; likewise, histologically disparate cancers can require similar treatment approaches due to intrinsic similarities. A comprehensive analysis integrated with drug response data and molecular alterations, particularly to reveal therapeutic concordance mechanisms across histologically disparate tumor subtypes, has not yet been fully exploited. In this study, we integrated pharmacological, genomic, and transcriptomic profiling data provided from the Cancer Genome Project (CGP) in a systematic in silico investigation of the pharmacological subtypes of cancers and the intrinsic concordance of molecular mechanisms leading to similar therapeutic responses across histologically disparate tumor subtypes. We further developed a novel approach to redefine cell-to-cell similarity and drug-to-drug similarity from the therapeutic concordance, providing a new point of view to study cancer heterogeneity. This study demonstrates how pharmacological and omics data can be used to systematically classify cancers in terms of response to various compounds and provides us with a purely therapy-oriented perspective to view tumor classifications independent of histology subtypes. The knowledge of pharmacological subtypes of 367 drugs are available via our website (http://www.hywanglab.cn/dtdb/), providing the resources for precision medicine in the perspective of therapeutic response-based re-classification of tumor.

7.
J Nat Prod ; 84(10): 2630-2643, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34553942

RESUMO

Claviceps purpurea is an ergot fungus known for its neurotropic alkaloids, which have been identified as the main cause of ergotism, a livestock and human disease triggered by ergot consumption. Tetrahydroxanthone dimers, the so-called ergopigments, presumably also contribute to this toxic effect. Overexpression of the cluster-specific transcription factor responsible for the formation of these pigments in C. purpurea led to the isolation of three new metabolites (8-10). The new pigments were characterized utilizing HRMS, NMR techniques, and CD spectroscopy and shown to be xanthone dimers. Secalonic acid A and its 2,4'- and 4,4'-linked isomers were also isolated, and their absolute configuration was investigated. The contribution of secalonic acid A, its isomers, and new metabolites to the toxicity of C. purpurea was investigated in HepG2 and CCF-STTG1 cells. Along with cytotoxic properties, secalonic acid A was found to inhibit topoisomerase I and II activity.


Assuntos
Claviceps/química , Xantenos/química , Células Hep G2 , Humanos , Estrutura Molecular , Inibidores da Topoisomerase , Xantonas
9.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809660

RESUMO

Non-small-cell lung cancer (NSCLC) with Kirsten rat sarcoma (KRAS) mutations has notoriously challenged oncologists and researchers for three notable reasons: (1) the historical assumption that KRAS is "undruggable", (2) the disease heterogeneity and (3) the shaping of the tumor microenvironment by KRAS downstream effector functions. Better insights into KRAS structural biochemistry allowed researchers to develop direct KRAS(G12C) inhibitors, which have shown early signs of clinical activity in NSCLC patients and have recently led to an FDA breakthrough designation for AMG-510. Following the approval of immune checkpoint inhibitors for PDL1-positive NSCLC, this could fuel yet another major paradigm shift in the treatment of advanced lung cancer. Here, we review advances in our understanding of the biology of direct KRAS inhibition and project future opportunities and challenges of dual KRAS and immune checkpoint inhibition. This strategy is supported by preclinical models which show that KRAS(G12C) inhibitors can turn some immunologically "cold" tumors into "hot" ones and therefore could benefit patients whose tumors harbor subtype-defining STK11/LKB1 co-mutations. Forty years after the discovery of KRAS as a transforming oncogene, we are on the verge of approval of the first KRAS-targeted drug combinations, thus therapeutically unifying Paul Ehrlich's century-old "magic bullet" vision with Rudolf Virchow's cancer inflammation theory.


Assuntos
Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/terapia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Microambiente Tumoral
10.
Mol Cancer Ther ; 20(4): 641-654, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536188

RESUMO

RAS gene mutations are the most frequent oncogenic event in lung cancer. They activate multiple RAS-centric signaling networks among them the MAPK, PI3K, and RB pathways. Within the MAPK pathway, ERK1/2 proteins exert a bottleneck function for transmitting mitogenic signals and activating cytoplasmic and nuclear targets. In view of disappointing antitumor activity and toxicity of continuously applied MEK inhibitors in patients with KRAS-mutant lung cancer, research has recently focused on ERK1/2 proteins as therapeutic targets and on ERK inhibitors for their ability to prevent bypass and feedback pathway activation. Here, we show that intermittent application of the novel and selective ATP-competitive ERK1/2 inhibitor LY3214996 exerts single-agent activity in patient-derived xenograft (PDX) models of RAS-mutant lung cancer. Combination treatments were well tolerated and resulted in synergistic (ERKi plus PI3K/mTORi LY3023414) and additive (ERKi plus CDK4/6i abemaciclib) tumor growth inhibition in PDX models. Future clinical trials are required to investigate if intermittent ERK inhibitor-based treatment schedules can overcome toxicities observed with continuous MEK inhibition and-equally important-to identify biomarkers for patient stratification.


Assuntos
Genes ras/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Oncogenes/genética , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia
11.
BMC Genomics ; 22(1): 27, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407103

RESUMO

BACKGROUND: Exosomes are extracellular vesicles (EVs) derived from endocytic compartments of eukaryotic cells which contain various biomolecules like mRNAs or miRNAs. Exosomes influence the biologic behaviour and progression of malignancies and are promising candidates as non-invasive diagnostic biomarkers or as targets for therapeutic interventions. Usually, quantitative real-time polymerase chain reaction (qRT-PCR) is used to assess gene expression in cancer exosomes, however, the ideal reference genes for normalization yet remain to be identified. RESULTS: In this study, we performed an unbiased analysis of high-throughput mRNA and miRNA-sequencing data from exosomes of patients with various cancer types and identify candidate reference genes and miRNAs in cancer exosomes. The expression stability of these candidate reference genes was evaluated by the coefficient of variation "CV" and the average expression stability value "M". We subsequently validated these candidate reference genes in exosomes from an independent cohort of ovarian cancer patients and healthy control individuals by qRT-PCR. CONCLUSIONS: Our study identifies OAZ1 and hsa-miR-6835-3p as the most reliable individual reference genes for mRNA and miRNA quantification, respectively. For superior accuracy, we recommend the use of a combination of reference genes - OAZ1/SERF2/MPP1 for mRNA and hsa-miR-6835-3p/hsa-miR-4468-3p for miRNA analyses.


Assuntos
Exossomos , MicroRNAs , Neoplasias , Exossomos/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , MicroRNAs/genética , Neoplasias/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Gigascience ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470133

RESUMO

BACKGROUND: In cancer cells, fusion genes can produce linear and chimeric fusion-circular RNAs (f-circRNAs), which are functional in gene expression regulation and implicated in malignant transformation, cancer progression, and therapeutic resistance. For specific cancers, proteins encoded by fusion transcripts have been identified as innovative therapeutic targets (e.g., EML4-ALK). Even though RNA sequencing (RNA-Seq) technologies combined with existing bioinformatics approaches have enabled researchers to systematically identify fusion transcripts, specifically detecting f-circRNAs in cells remains challenging owing to their general sparsity and low abundance in cancer cells but also owing to imperfect computational methods. RESULTS: We developed the Python-based workflow "Fcirc" to identify fusion linear and f-circRNAs from RNA-Seq data with high specificity. We applied Fcirc to 3 different types of RNA-Seq data scenarios: (i) actual synthetic spike-in RNA-Seq data, (ii) simulated RNA-Seq data, and (iii) actual cancer cell-derived RNA-Seq data. Fcirc showed significant advantages over existing methods regarding both detection accuracy (i.e., precision, recall, F-measure) and computing performance (i.e., lower runtimes). CONCLUSION: Fcirc is a powerful and comprehensive Python-based pipeline to identify linear and circular RNA transcripts from known fusion events in RNA-Seq datasets with higher accuracy and shorter computing times compared with previously published algorithms. Fcirc empowers the research community to study the biology of fusion RNAs in cancer more effectively.


Assuntos
Algoritmos , Biologia Computacional/métodos , RNA Circular/genética , RNA/genética , Software , Regulação da Expressão Gênica , Fusão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Reprodutibilidade dos Testes , Fluxo de Trabalho
13.
EBioMedicine ; 49: 106-117, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31668570

RESUMO

BACKGROUND: KRAS mutations are the most frequent oncogenic aberration in lung adenocarcinoma. KRAS mutant isoforms differentially shape tumour biology and influence drug responses. This heterogeneity challenges the development of effective therapies for patients with KRAS-driven non-small cell lung cancer (NSCLC). METHODS: We developed an integrative pharmacogenomics analysis to identify potential drug targets to overcome MEK/ERK inhibitor resistance in lung cancer cell lines with KRAS(G12C) mutation (n = 12). We validated our predictive in silico results with in vitro models using gene knockdown, pharmacological target inhibition and reporter assays. FINDINGS: Our computational analysis identifies casein kinase 2A1 (CSNK2A1) as a mediator of MEK/ERK inhibitor resistance in KRAS(G12C) mutant lung cancer cells. CSNK2A1 knockdown reduces cell proliferation, inhibits Wnt/ß-catenin signalling and increases the anti-proliferative effect of MEK inhibition selectively in KRAS(G12C) mutant lung cancer cells. The specific CK2-inhibitor silmitasertib phenocopies the CSNK2A1 knockdown effect and sensitizes KRAS(G12C) mutant cells to MEK inhibition. INTERPRETATION: Our study supports the importance of accurate patient stratification and rational drug combinations to gain benefit from MEK inhibition in patients with KRAS mutant NSCLC. We develop a genotype-based strategy that identifies CK2 as a promising co-target in KRAS(G12C) mutant NSCLC by using available pharmacogenomics gene expression datasets. This approach is applicable to other oncogene driven cancers. FUND: This work was supported by grants from the National Natural Science Foundation of China, the National Key Research and Development Program of China, the Lung Cancer Research Foundation and a Mildred-Scheel postdoctoral fellowship from the German Cancer Aid Foundation.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Terapia de Alvo Molecular , Mutação/genética , Farmacogenética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genes Dominantes , Humanos , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Metástase Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
14.
Nat Commun ; 10(1): 4027, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492837

RESUMO

Cells feel the forces exerted on them by the surrounding extracellular matrix (ECM) environment and respond to them. While many cell fate processes are dictated by these forces, which are highly synchronized in space and time, abnormal force transduction is implicated in the progression of many diseases (muscular dystrophy, cancer). However, material platforms that enable transient, cyclic forces in vitro to recreate an in vivo-like scenario remain a challenge. Here, we report a hydrogel system that rapidly beats (actuates) with spatio-temporal control using a near infra-red light trigger. Small, user-defined mechanical forces (~nN) are exerted on cells growing on the hydrogel surface at frequencies up to 10 Hz, revealing insights into the effect of actuation on cell migration and the kinetics of reversible nuclear translocation of the mechanosensor protein myocardin related transcription factor A, depending on the actuation amplitude, duration and frequency.


Assuntos
Movimento Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Hidrogéis/metabolismo , Mecanotransdução Celular , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/citologia , Cinética , Camundongos , Transativadores/metabolismo
15.
Mycotoxin Res ; 34(3): 179-185, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29549547

RESUMO

In the course of gaining new insights into the secondary metabolite profile of various Stachybotrys strains, in particular concerning triprenyl phenol-like compounds, so far, unknown metabolites with analogous structural features were discovered. Three novel meroterpenoids containing a chromene ring moiety, namely stachybotrychromenes A-C, were isolated from solid culture of the filamentous fungus Stachybotrys chartarum DSMZ 12880 (chemotype S). Their structures were elucidated by means of comprehensive spectroscopic analysis (1D and 2D NMR, ESI-HRMS, and CD) as well as by comparison with spectroscopic data of structural analogues described in literature. Stachybotrychromenes A and B exhibited moderate cytotoxic effects on HepG2 cells after 24 h with corresponding IC50 values of 73.7 and 28.2 µM, respectively. Stachybotrychromene C showed no significant cytotoxic activity up to 100 µM. Moreover, it is noteworthy that stachybotrychromenes A-C are produced not only by S. chartarum chemotype S but also S. chartarum chemotype A and Stachybotrys chlorohalonata.


Assuntos
Micotoxinas/isolamento & purificação , Micotoxinas/toxicidade , Stachybotrys/química , Terpenos/isolamento & purificação , Terpenos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Micotoxinas/química , Análise Espectral , Stachybotrys/crescimento & desenvolvimento , Terpenos/química
16.
Biomaterials ; 163: 128-141, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29459322

RESUMO

Natural healing is based on highly orchestrated processes, in which the extracellular matrix plays a key role. To resemble the native cell environment, we introduce an artificial extracellular matrix (aECM) with the capability to template hierarchical and anisotropic structures in situ, allowing a minimally-invasive application via injection. Synthetic, magnetically responsive, rod-shaped microgels are locally aligned and fixed by a biocompatible surrounding hydrogel, creating a hybrid anisotropic hydrogel (Anisogel), of which the physical, mechanical, and chemical properties can be tailored. The microgels are rendered cell-adhesive with GRGDS and incorporated either inside a cell-adhesive fibrin or bioinert poly(ethylene glycol) hydrogel to strongly interact with fibroblasts. GRGDS-modified microgels inside a fibrin-based Anisogel enhance fibroblast alignment and lead to a reduction in fibronectin production, indicating successful replacement of structural proteins. In addition, YAP-translocation to the nucleus increases with the concentration of microgels, indicating cellular sensing of the overall anisotropic mechanical properties of the Anisogel. For bioinert surrounding PEG hydrogels, GRGDS-microgels are required to support cell proliferation and fibronectin production. In contrast to fibroblasts, primary nerve growth is not significantly affected by the biomodification of the microgels. In conclusion, this approach opens new opportunities towards advanced and complex aECMs for tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/química , Anisotropia , Biomimética , Adesão Celular , Proliferação de Células , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Dimetilpolisiloxanos/química , Compostos Férricos/química , Fibrina/química , Fibroblastos/citologia , Fibroblastos/fisiologia , Fibronectinas/metabolismo , Humanos , Hidrogéis , Nanopartículas Metálicas/química , Peptídeos/química , Polietilenoglicóis/química , Porosidade
17.
Cell ; 172(4): 857-868.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29336889

RESUMO

The mechanism by which the wild-type KRAS allele imparts a growth inhibitory effect to oncogenic KRAS in various cancers, including lung adenocarcinoma (LUAD), is poorly understood. Here, using a genetically inducible model of KRAS loss of heterozygosity (LOH), we show that KRAS dimerization mediates wild-type KRAS-dependent fitness of human and murine KRAS mutant LUAD tumor cells and underlies resistance to MEK inhibition. These effects are abrogated when wild-type KRAS is replaced by KRASD154Q, a mutant that disrupts dimerization at the α4-α5 KRAS dimer interface without changing other fundamental biochemical properties of KRAS, both in vitro and in vivo. Moreover, dimerization has a critical role in the oncogenic activity of mutant KRAS. Our studies provide mechanistic and biological insights into the role of KRAS dimerization and highlight a role for disruption of dimerization as a therapeutic strategy for KRAS mutant cancers.


Assuntos
Adenocarcinoma de Pulmão , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mutação de Sentido Incorreto , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Knockout , Multimerização Proteica/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
18.
Curr Med Chem ; 25(5): 558-574, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28554329

RESUMO

BACKGROUND: Lung cancer accounts for one in five cancer deaths worldwide and mutations in the gene encoding for the Kirsten rat sarcoma (KRAS) oncoprotein define the largest molecular subset of non-small cell lung cancer (NSCLC). These tumors are characterized by activated MAPK signaling, however, no targeted inhibitors of mutant KRAS or of downstream signaling molecules have yet been approved for routine clinical use. OBJECTIVE: The primary objective of this review is to critically summarize the current developmental state of MEK and ERK inhibitors in pre-clinical models and in human clinical trials for KRAS mutant lung cancer particularly in light of the newly emerging concept of immune checkpoint blockade. METHOD: We performed a Pubmed-based literature search and considered publications from the fields of basic and translational biomedicinal and biochemistry research, as well as from past and ongoing human clinical trials (www.clinicaltrials.gov). RESULTS AND CONCLUSIONS: MAPK pathway targeting agents are efficacious in pre-clinical models but their benefit is limited for patients with KRAS mutant NSCLC due to the lack of predictive factors, toxicity and the adaptive dynamic kinome reprogramming within the tumor. Overall, MEK inhibitors have advanced further in clinical development compared to ERK inhibitors. New treatment strategies as e.g. immune checkpoint blockade are currently revolutionizing the treatment paradigms and future clinical trials need to show if they replace MAPK targeting strategies or are used as add-on.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Descoberta de Drogas , Humanos , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
19.
Bioorg Med Chem ; 25(13): 3384-3395, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28501431

RESUMO

In order to obtain enantiomerically pure σ1 receptor ligands with a 2-benzopyran scaffold an Oxa-Pictet-Spengler reaction with the enantiomerically pure 2-phenylethanol derivatives (R)-4 and (S)-4 was envisaged. The kinetic resolution of racemic alcohol (±)-4 using Amano Lipase PS-C II and isopropenyl acetate in tert-butyl methyl ether led to the (R)-configured alcohol (R)-4 in 42% yield with an enantiomeric excess of 99.6%. The (S)-configured alcohol (S)-4 was obtained by Amano Lipase PS-C II catalyzed hydrolysis of enantiomerically enriched acetate (S)-5 (76.9% ee) and provided (S)-4 in 26% yield and 99.7% ee. The absolute configuration of alcohol (R)-4 was determined by exciton coupled CD spectroscopy of the bis(bromobenzoate) (R)-7. The next important step for the synthesis of 2-benzopyrans 2 and 3 was the Oxa-Pictet-Spengler reaction of the enantiomerically pure alcohols (R)-4 and (S)-4 with piperidone ketal 8 and chloropropionaldehyde acetal 12. The conformationally restricted spirocyclic 2-benzopyrans 2 revealed higher σ1 affinity than the more flexible aminoethyl derivatives 3. The (R)- and (R,R)-configured enantiomers (R)-2 and (R,R)-3 represent the eutomers of this class of compounds with eudismic ratios of 4.8 (2b) and 4.5 (2c). High σ1/σ2 selectivity (>49) was found for the most potent σ1 ligands (R)-2b, (R)-2c, (R)-2d, and (S)-2d (Ki(σ1) 9-15nM).


Assuntos
Benzopiranos/metabolismo , Lipase/metabolismo , Animais , Benzopiranos/química , Biocatálise , Burkholderia/enzimologia , Candida/enzimologia , Relação Dose-Resposta a Droga , Ligantes , Estrutura Molecular , Mucor/enzimologia , Pseudomonas fluorescens/enzimologia , Receptores sigma , Estereoisomerismo , Relação Estrutura-Atividade , Suínos
20.
Nano Lett ; 17(6): 3782-3791, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28326790

RESUMO

Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.


Assuntos
Hidrogéis/química , Nanopartículas Metálicas/química , Neurônios/citologia , Animais , Anisotropia , Materiais Biocompatíveis , Galinhas , Campos Eletromagnéticos , Compostos Férricos/química , Compostos Férricos/toxicidade , Fibroblastos/citologia , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Nanopartículas Metálicas/toxicidade , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenos/química , Polipropilenos/química , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA