Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766031

RESUMO

Hematopoietic multipotent progenitors (MPPs) regulate blood cell production to appropriately meet the biological demands of the human body. Human MPPs remain ill-defined whereas mouse MPPs have been well characterized with distinct immunophenotypes and lineage potencies. Using multiomic single cell analyses and complementary functional assays, we identified new human MPPs and oligopotent progenitor populations within Lin-CD34+CD38dim/lo adult bone marrow with distinct biomolecular and functional properties. These populations were prospectively isolated based on expression of CD69, CLL1, and CD2 in addition to classical markers like CD90 and CD45RA. We show that within the canonical Lin-CD34+CD38dim/loCD90CD45RA-MPP population, there is a CD69+ MPP with long-term engraftment and multilineage differentiation potential, a CLL1+ myeloid-biased MPP, and a CLL1-CD69-erythroid-biased MPP. We also show that the canonical Lin-CD34+CD38dim/loCD90-CD45RA+ LMPP population can be separated into a CD2+ LMPP with lymphoid and myeloid potential, a CD2-LMPP with high lymphoid potential, and a CLL1+ GMP with minimal lymphoid potential. We used these new HSPC profiles to study human and mouse bone marrow cells and observe limited cell type specific homology between humans and mice and cell type specific changes associated with aging. By identifying and functionally characterizing new adult MPP sub-populations, we provide an updated reference and framework for future studies in human hematopoiesis.

2.
Blood Cancer Discov ; 5(3): 202-223, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359087

RESUMO

Mutations in additional sex combs like 1 (ASXL1) confer poor prognosis both in myeloid malignancies and in premalignant clonal hematopoiesis (CH). However, the mechanisms by which these mutations contribute to disease initiation remain unresolved, and mutation-specific targeting has remained elusive. To address this, we developed a human disease model that recapitulates the disease trajectory from ASXL1-mutant CH to lethal myeloid malignancy. We demonstrate that mutations in ASXL1 lead to the expression of a functional, truncated protein and determine that truncated ASXL1 leads to global redistribution of the repressive chromatin mark H2AK119Ub, increased transposase-accessible chromatin, and activation of both myeloid and stem cell gene-expression programs. Finally, we demonstrate that H2AK119Ub levels are tied to truncated ASXL1 expression levels and leverage this observation to demonstrate that inhibition of the PRC1 complex might be an ASXL1-mutant-specific therapeutic vulnerability in both premalignant CH and myeloid malignancy. SIGNIFICANCE: Mutant ASXL1 is a common driver of CH and myeloid malignancy. Using primary human HSPCs, we determine that truncated ASXL1 leads to redistribution of H2AK119Ub and may affect therapeutic vulnerability to PRC1 inhibition.


Assuntos
Mutação , Proteínas Repressoras , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitinação , Histonas/metabolismo , Histonas/genética , Hematopoese/genética , Hematopoiese Clonal/genética
3.
Blood Cancer Discov ; : OF1-OF18, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261864

RESUMO

Rare preleukemic hematopoietic stem cells (pHSC) harboring only the initiating mutations can be detected at the time of acute myeloid leukemia (AML) diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSC). We confirm that IDH1-driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in the complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wild-type HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent the development and relapse of leukemia. SIGNIFICANCE: A high burden of pHSCs is associated with worse overall survival in AML. Using single-cell sequencing, metabolic assessment, and gene-edited human models, we find human pHSCs with IDH1 mutations to be metabolically vulnerable and sensitive to eradication by complex I inhibition. See related commentary by Steensma.

4.
Blood Cancer Discov ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091010

RESUMO

Rare preleukemic hematopoietic stem cells (pHSCs) harboring only the initiating mutations can be detected at the time of AML diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene-editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSCs). We confirm that IDH1 driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC Class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wildtype HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent development and relapse of leukemia.

5.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873452

RESUMO

Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

6.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581927

RESUMO

Disease-initiating mutations in the transcription factor RUNX1 occur as germline and somatic events that cause leukemias with particularly poor prognosis. However, the role of RUNX1 in leukemogenesis is not fully understood, and effective therapies for RUNX1-mutant leukemias remain elusive. Here, we used primary patient samples and a RUNX1-KO model in primary human hematopoietic cells to investigate how RUNX1 loss contributes to leukemic progression and to identify targetable vulnerabilities. Surprisingly, we found that RUNX1 loss decreased proliferative capacity and stem cell function. However, RUNX1-deficient cells selectively upregulated the IL-3 receptor. Exposure to IL-3, but not other JAK/STAT cytokines, rescued RUNX1-KO proliferative and competitive defects. Further, we demonstrated that RUNX1 loss repressed JAK/STAT signaling and rendered RUNX1-deficient cells sensitive to JAK inhibitors. Our study identifies a dependency of RUNX1-mutant leukemias on IL-3/JAK/STAT signaling, which may enable targeting of these aggressive blood cancers with existing agents.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Interleucina-3 , Leucemia , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Interleucina-3/genética , Interleucina-3/farmacologia , Leucemia/tratamento farmacológico , Leucemia/genética , Transdução de Sinais
7.
Cancer Discov ; 13(5): 1164-1185, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856575

RESUMO

Therapeutic cancer vaccination seeks to elicit activation of tumor-reactive T cells capable of recognizing tumor-associated antigens (TAA) and eradicating malignant cells. Here, we present a cancer vaccination approach utilizing myeloid-lineage reprogramming to directly convert cancer cells into tumor-reprogrammed antigen-presenting cells (TR-APC). Using syngeneic murine leukemia models, we demonstrate that TR-APCs acquire both myeloid phenotype and function, process and present endogenous TAAs, and potently stimulate TAA-specific CD4+ and CD8+ T cells. In vivo TR-APC induction elicits clonal expansion of cancer-specific T cells, establishes cancer-specific immune memory, and ultimately promotes leukemia eradication. We further show that both hematologic cancers and solid tumors, including sarcomas and carcinomas, are amenable to myeloid-lineage reprogramming into TR-APCs. Finally, we demonstrate the clinical applicability of this approach by generating TR-APCs from primary clinical specimens and stimulating autologous patient-derived T cells. Thus, TR-APCs represent a cancer vaccination therapeutic strategy with broad implications for clinical immuno-oncology. SIGNIFICANCE: Despite recent advances, the clinical benefit provided by cancer vaccination remains limited. We present a cancer vaccination approach leveraging myeloid-lineage reprogramming of cancer cells into APCs, which subsequently activate anticancer immunity through presentation of self-derived cancer antigens. Both hematologic and solid malignancies derive significant therapeutic benefit from reprogramming-based immunotherapy. This article is highlighted in the In This Issue feature, p. 1027.


Assuntos
Vacinas Anticâncer , Leucemia , Neoplasias , Animais , Camundongos , Células Apresentadoras de Antígenos , Neoplasias/terapia , Antígenos de Neoplasias , Imunoterapia
8.
J Vis Exp ; (193)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36971438

RESUMO

Throughout their lifetime, hematopoietic stem and progenitor cells (HSPCs) acquire somatic mutations. Some of these mutations alter HSPC functional properties such as proliferation and differentiation, thereby promoting the development of hematologic malignancies. Efficient and precise genetic manipulation of HSPCs is required to model, characterize, and better understand the functional consequences of recurrent somatic mutations. Mutations can have a deleterious effect on a gene and result in loss-of-function (LOF) or, in stark contrast, may enhance function or even lead to novel characteristics of a particular gene, termed gain-of-function (GOF). In contrast to LOF mutations, GOF mutations almost exclusively occur in a heterozygous fashion. Current genome-editing protocols do not allow for the selective targeting of individual alleles, hampering the ability to model heterozygous GOF mutations. Here, we provide a detailed protocol on how to engineer heterozygous GOF hotspot mutations in human HSPCs by combining CRISPR/Cas9-mediated homology-directed repair and recombinant AAV6 technology for efficient DNA donor template transfer. Importantly, this strategy makes use of a dual fluorescent reporter system to allow for the tracking and purification of successfully heterozygously edited HSPCs. This strategy can be employed to precisely investigate how GOF mutations affect HSPC function and their progression toward hematological malignancies.


Assuntos
Mutação com Ganho de Função , Edição de Genes , Humanos , Edição de Genes/métodos , Células-Tronco Hematopoéticas , Mutação , Sistemas CRISPR-Cas
9.
Cancer Discov ; 13(2): 496-515, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36355448

RESUMO

Isocitrate dehydrogenase 1 and 2 (IDH) are mutated in multiple cancers and drive production of (R)-2-hydroxyglutarate (2HG). We identified a lipid synthesis enzyme [acetyl CoA carboxylase 1 (ACC1)] as a synthetic lethal target in mutant IDH1 (mIDH1), but not mIDH2, cancers. Here, we analyzed the metabolome of primary acute myeloid leukemia (AML) blasts and identified an mIDH1-specific reduction in fatty acids. mIDH1 also induced a switch to b-oxidation indicating reprogramming of metabolism toward a reliance on fatty acids. Compared with mIDH2, mIDH1 AML displayed depletion of NADPH with defective reductive carboxylation that was not rescued by the mIDH1-specific inhibitor ivosidenib. In xenograft models, a lipid-free diet markedly slowed the growth of mIDH1 AML, but not healthy CD34+ hematopoietic stem/progenitor cells or mIDH2 AML. Genetic and pharmacologic targeting of ACC1 resulted in the growth inhibition of mIDH1 cancers not reversible by ivosidenib. Critically, the pharmacologic targeting of ACC1 improved the sensitivity of mIDH1 AML to venetoclax. SIGNIFICANCE: Oncogenic mutations in both IDH1 and IDH2 produce 2-hydroxyglutarate and are generally considered equivalent in terms of pathogenesis and targeting. Using comprehensive metabolomic analysis, we demonstrate unexpected metabolic differences in fatty acid metabolism between mutant IDH1 and IDH2 in patient samples with targetable metabolic interventions. See related commentary by Robinson and Levine, p. 266. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Humanos , Glutaratos/metabolismo , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação
10.
Biomark Res ; 10(1): 43, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35681175

RESUMO

BACKGROUND: Immunotherapy of acute myeloid leukemia has experienced considerable advances, however novel target antigens continue to be sought after. To this end, unbiased approaches for surface protein detection are limited and integration with other data types, such as gene expression and somatic mutational burden, are poorly utilized. The Cell Surface Capture technology provides an unbiased, discovery-driven approach to map the surface proteins on cells of interest. Yet, direct utilization of primary patient samples has been limited by the considerable number of viable cells needed. METHODS: Here, we optimized the Cell Surface Capture protocol to enable direct interrogation of primary patient samples and applied our optimized protocol to a set of samples from patients with acute myeloid leukemia (AML) to generate the AML surfaceome. We then further curated this AML surfaceome to exclude antigens expressed on healthy tissues and integrated mutational burden data from hematologic cancers to further enrich for targets which are likely to be essential to leukemia biology. Finally, we validated our findings in a separate cohort of AML patient samples. RESULTS: Our protocol modifications allowed us to double the yield in identified proteins and increased the specificity from 54 to 80.4% compared to previous approaches. Using primary AML patient samples, we were able to identify a total of 621 surface proteins comprising the AML surfaceome. We integrated this data with gene expression and mutational burden data to curate a set of robust putative target antigens. Seventy-six proteins were selected as potential candidates for further investigation of which we validated the most promising novel candidate markers, and identified CD148, ITGA4 and Integrin beta-7 as promising targets in AML. Integrin beta-7 showed the most promising combination of expression in patient AML samples, and low or absent expression on healthy hematopoietic tissue. CONCLUSION: Taken together, we demonstrate the feasibility of a highly optimized surfaceome detection method to interrogate the entire AML surfaceome directly from primary patient samples and integrate this data with gene expression and mutational burden data to achieve a robust, multiomic target identification platform. This approach has the potential to accelerate the unbiased target identification for immunotherapy of AML.

11.
Blood Cancer Discov ; 3(4): 346-367, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35532363

RESUMO

The conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is a key step in DNA demethylation that is mediated by ten-eleven translocation (TET) enzymes, which require ascorbate/vitamin C. Here, we report the 5hmC landscape of normal hematopoiesis and identify cell type-specific 5hmC profiles associated with active transcription and chromatin accessibility of key hematopoietic regulators. We utilized CRISPR/Cas9 to model TET2 loss-of-function mutations in primary human hematopoietic stem and progenitor cells (HSPC). Disrupted cells exhibited increased colonies in serial replating, defective erythroid/megakaryocytic differentiation, and in vivo competitive advantage and myeloid skewing coupled with reduction of 5hmC at erythroid-associated gene loci. Azacitidine and ascorbate restored 5hmC abundance and slowed or reverted the expansion of TET2-mutant clones in vivo. These results demonstrate the key role of 5hmC in normal hematopoiesis and TET2-mutant phenotypes and raise the possibility of utilizing these agents to further our understanding of preleukemia and clonal hematopoiesis. SIGNIFICANCE: We show that 5-hydroxymethylation profiles are cell type-specific and associated with transcriptional abundance and chromatin accessibility across human hematopoiesis. TET2 loss caused aberrant growth and differentiation phenotypes and disrupted 5hmC and transcriptional landscapes. Treatment of TET2 KO HSPCs with ascorbate or azacitidine reverted 5hmC profiles and restored aberrant phenotypes. This article is highlighted in the In This Issue feature, p. 265.


Assuntos
Dioxigenases , Síndromes Mielodisplásicas , Pré-Leucemia , Azacitidina/farmacologia , Cromatina/genética , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Hematopoese/genética , Humanos , Proteínas Proto-Oncogênicas/genética
12.
Cancer Discov ; 11(12): 2987-2997, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407958

RESUMO

Our knowledge of how clonal hematopoiesis relates to diverse health conditions has grown vastly over the past years, touching upon many specialties beyond cancer medicine. Given that clonal hematopoiesis can act as a precursor to overt disease in many settings, the promise of early intervention has garnered much attention. In this review, we discuss the state of clonal hematopoiesis research and outline the challenges in developing clinical trials of early interventions. We anticipate that incidental findings of clonal hematopoiesis will become more common in the near future, but evidence-based efforts of how to manage these findings is currently lacking. SIGNIFICANCE: Our knowledge regarding the relevance of clonal hematopoiesis has increased drastically over the past years. However, evidence of how to manage these findings is currently lacking. In this review, we summarize the current state of clonal hematopoiesis research and outline the challenges of developing clinical trials in this field. We anticipate that incidental findings of clonal hematopoiesis will become more common in the near future and argue that there is urgency to start designing and conducting prospective trials.


Assuntos
Hematopoiese Clonal , Neoplasias , Evolução Clonal , Hematopoiese Clonal/genética , Hematopoese/genética , Humanos , Mutação , Neoplasias/genética , Neoplasias/terapia , Estudos Prospectivos
13.
Nat Commun ; 12(1): 472, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473139

RESUMO

Targeted DNA correction of disease-causing mutations in hematopoietic stem and progenitor cells (HSPCs) may enable the treatment of genetic diseases of the blood and immune system. It is now possible to correct mutations at high frequencies in HSPCs by combining CRISPR/Cas9 with homologous DNA donors. Because of the precision of gene correction, these approaches preclude clonal tracking of gene-targeted HSPCs. Here, we describe Tracking Recombination Alleles in Clonal Engraftment using sequencing (TRACE-Seq), a methodology that utilizes barcoded AAV6 donor template libraries, carrying in-frame silent mutations or semi-randomized nucleotides outside the coding region, to track the in vivo lineage contribution of gene-targeted HSPC clones. By targeting the HBB gene with an AAV6 donor template library consisting of ~20,000 possible unique exon 1 in-frame silent mutations, we track the hematopoietic reconstitution of HBB targeted myeloid-skewed, lymphoid-skewed, and balanced multi-lineage repopulating human HSPC clones in mice. We anticipate this methodology could potentially be used for HSPC clonal tracking of Cas9 RNP and AAV6-mediated gene targeting outcomes in translational and basic research settings.


Assuntos
Alelos , Células Clonais , Marcação de Genes/métodos , Células-Tronco Hematopoéticas , Recombinação Genética , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Edição de Genes/métodos , Terapia Genética/métodos , Humanos , Camundongos , Mutação , Reparo Gênico Alvo-Dirigido/métodos
14.
Nat Cancer ; 1(8): 826-839, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33123685

RESUMO

Deregulation of the BCL2 gene family plays an important role in the pathogenesis of acute myeloid leukemia (AML). The BCL2 inhibitor, venetoclax, has received FDA approval for the treatment of AML. However, upfront and acquired drug resistance ensues due, in part, to the clinical and genetic heterogeneity of AML, highlighting the importance of identifying biomarkers to stratify patients onto the most effective therapies. By integrating clinical characteristics, exome and RNA sequencing, and inhibitor data from primary AML patient samples, we determined that myelomonocytic leukemia, upregulation of BCL2A1 and CLEC7A, as well as mutations of PTPN11 and KRAS conferred resistance to venetoclax and multiple venetoclax combinations. Venetoclax in combination with an MCL1 inhibitor AZD5991 induced synthetic lethality and circumvented venetoclax resistance.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , Biomarcadores , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas
15.
Blood Adv ; 4(5): 943-952, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32150611

RESUMO

Although most patients with acute myeloid leukemia (AML) achieve clinical remission with induction chemotherapy, relapse rates remain high. Next-generation sequencing enables minimal/measurable residual disease (MRD) detection; however, clinical significance is limited due to difficulty differentiating between pre-leukemic clonal hematopoiesis and frankly malignant clones. Here, we investigated AML MRD using targeted single-cell sequencing (SCS) at diagnosis, remission, and relapse (n = 10 relapsed, n = 4 nonrelapsed), with a total of 310 737 single cells sequenced. Sequence variants were identified in 80% and 75% of remission samples for patients with and without relapse, respectively. Pre-leukemic clonal hematopoiesis clones were detected in both cohorts, and clones with multiple cooccurring mutations were observed in 50% and 0% of samples. Similar clonal richness was observed at diagnosis in both cohorts; however, decreasing clonal diversity at remission was significantly associated with longer relapse-free survival. These results show the power of SCS in investigating AML MRD and clonal evolution.


Assuntos
Leucemia Mieloide Aguda , Evolução Clonal/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Neoplasia Residual , Indução de Remissão
16.
Clin Transl Immunology ; 9(3): e1117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153780

RESUMO

OBJECTIVES: Innovative post-remission therapies are needed to eliminate residual AML cells. DC vaccination is a promising strategy to induce anti-leukaemic immune responses. METHODS: We conducted a first-in-human phase I study using TLR7/8-matured DCs transfected with RNA encoding the two AML-associated antigens WT1 and PRAME as well as CMVpp65. AML patients in CR at high risk of relapse were vaccinated 10× over 26 weeks. RESULTS: Despite heavy pretreatment, DCs of sufficient number and quality were generated from a single leukapheresis in 11/12 cases, and 10 patients were vaccinated. Administration was safe and resulted in local inflammatory responses with dense T-cell infiltration. In peripheral blood, increased antigen-specific CD8+ T cells were seen for WT1 (2/10), PRAME (4/10) and CMVpp65 (9/10). For CMVpp65, increased CD4+ T cells were detected in 4/7 patients, and an antibody response was induced in 3/7 initially seronegative patients. Median OS was not reached after 1057 days; median RFS was 1084 days. A positive correlation was observed between clinical benefit and younger age as well as mounting of antigen-specific immune responses. CONCLUSIONS: Administration of TLR7/8-matured DCs to AML patients in CR at high risk of relapse was feasible and safe and resulted in induction of antigen-specific immune responses. Clinical benefit appeared to occur more likely in patients <65 and in patients mounting an immune response. Our observations need to be validated in a larger patient cohort. We hypothesise that TLR7/8 DC vaccination strategies should be combined with hypomethylating agents or checkpoint inhibition to augment immune responses. TRIAL REGISTRATION: The study was registered at https://clinicaltrials.gov on 17 October 2012 (NCT01734304) and at https://www.clinicaltrialsregister.eu (EudraCT-Number 2010-022446-24) on 10 October 2013.

17.
J Clin Invest ; 130(4): 1843-1849, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31895700

RESUMO

Cancer-related anemia is present in more than 60% of newly diagnosed cancer patients and is associated with substantial morbidity and high medical costs. Drugs that enhance erythropoiesis are urgently required to decrease transfusion rates and improve quality of life. Clinical studies have observed an unexpected improvement in hemoglobin and RBC transfusion-independence in patients with acute myeloid leukemia (AML) treated with the isocitrate dehydrogenase 2 (IDH2) mutant-specific inhibitor enasidenib, leading to improved quality of life without a reduction in AML disease burden. Here, we demonstrate that enasidenib enhanced human erythroid differentiation of hematopoietic progenitors. The phenomenon was not observed with other IDH1/2 inhibitors and occurred in IDH2-deficient CRISPR-engineered progenitors independently of D-2-hydroxyglutarate. The effect of enasidenib on hematopoietic progenitors was mediated by protoporphyrin accumulation, driving heme production and erythroid differentiation in committed CD71+ progenitors rather than hematopoietic stem cells. Our results position enasidenib as a promising therapeutic agent for improvement of anemia and provide the basis for a clinical trial using enasidenib to decrease transfusion dependence in a wide array of clinical contexts.


Assuntos
Aminopiridinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Eritroides/enzimologia , Células-Tronco Hematopoéticas/enzimologia , Isocitrato Desidrogenase/antagonistas & inibidores , Triazinas/farmacologia , Células Eritroides/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Isocitrato Desidrogenase/metabolismo , Protoporfirinas/metabolismo
18.
Leuk Lymphoma ; 61(1): 138-145, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480965

RESUMO

The GMALL07/2003 protocol introduced pegylated E. coli asparaginase (PEG-ASNase) frontline for adults with acute lymphoblastic leukemia (ALL). PEG-ASNase (500 U/m2, 1000 U/m2, or 2000 U/m2) was given once in induction and as part of three HD-MTX/PEG-ASNase cycles with two PEG-ASNase doses every other week in consolidation. PEG-ASNase activities were monitored in 1363 serum samples from 304 ALL patients. The overall rate of silent inactivation was low (5%) and did not differ between induction and consolidation. The successful targeting of PEG-ASNase activities ≥100 U/L depended on protocol and dose. Overall PEG-ASNase activities were higher during consolidation compared to induction. To target PEG-ASNase activities ≥100 U/L for 14 day with a single dose in induction, 2000 U/m2 was more preferable than 1000 U/m2 or 500 U/m2. During consolidation with two administrations every other week, 1000 U/m2 and 2000 U/m2 were similarly effective in sustaining PEG-ASNase ≥100 U/L activities over 14 days.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Antineoplásicos/uso terapêutico , Asparaginase/uso terapêutico , Escherichia coli , Humanos , Polietilenoglicóis/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
19.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100828

RESUMO

In spite of therapeutic improvements in the treatment of different hematologic malignancies, the prognosis of acute myeloid leukemia (AML) treated solely with conventional induction and consolidation chemotherapy remains poor, especially in association with high risk chromosomal or molecular aberrations. Recent discoveries describe the complex interaction of immune effector cells, as well as the role of the bone marrow microenvironment in the development, maintenance and progression of AML. Lipids, and in particular omega-3 as well as omega-6 polyunsaturated fatty acids (PUFAs) have been shown to play a vital role as signaling molecules of immune processes in numerous benign and malignant conditions. While the majority of research in cancer has been focused on the role of lipid mediators in solid tumors, some data are showing their involvement also in hematologic malignancies. There is a considerable amount of evidence that AML cells are targetable by innate and adaptive immune mechanisms, paving the way for immune therapy approaches in AML. In this article we review the current data showing the lipid mediator and lipidome patterns in AML and their potential links to immune mechanisms.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Lipídeos/uso terapêutico , Imunidade Adaptativa/efeitos dos fármacos , Medula Óssea , Progressão da Doença , Ácidos Graxos Ômega-3/imunologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-6/imunologia , Ácidos Graxos Ômega-6/uso terapêutico , Ácidos Graxos Insaturados , Neoplasias Hematológicas/tratamento farmacológico , Hematopoese , Humanos , Imunidade Inata/efeitos dos fármacos , Imunoterapia , Inflamação , Leucemia Mieloide Aguda/imunologia , Lipídeos/imunologia , Neoplasias/tratamento farmacológico , Prognóstico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA