Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101163

RESUMO

The transport and Golgi organization 1 (TANGO1) proteins play pivotal roles in the secretory pathway. Full length TANGO1 is a transmembrane protein localised at endoplasmic reticulum (ER) exit sites, where it binds bulky cargo within the ER lumen and recruits membranes from the ER Golgi intermediate compartment to create an exit route for their export. Here we report the first TANGO1-associated syndrome in humans. A synonymous substitution that results in exon eight skipping in most mRNA molecules, ultimately leading to a truncated TANGO1 protein was identified as disease-causing mutation. The four homozygously affected sons of a consanguineous family display severe dentinogenesis imperfecta, short stature, various skeletal abnormalities, insulin-dependent diabetes mellitus, sensorineural hearing loss, and mild intellectual disability. Functional studies in HeLa and U2OS cells revealed that the corresponding truncated TANGO1 protein is dispersed in the ER and its expression in cells with intact endogenous TANGO1 impairs cellular collagen I secretion.


Assuntos
Alelos , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Colágeno/metabolismo , Mutação , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Elementos Facilitadores Genéticos , Éxons , Complexo de Golgi/metabolismo , Humanos , Transporte Proteico , Sequenciamento do Exoma
2.
Int J Cancer ; 145(4): 1020-1032, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30873613

RESUMO

Merkel cell carcinoma (MCC), an aggressive neuroendocrine skin tumor, is a polyomavirus-induced human cancer. To study the causal relationship of MCC carcinogenesis with the integrated Merkel cell polyomavirus (MCPyV) in detail, well-characterized MCC cell lines are needed. Consequently, in the current study, we established and characterized six MCPyV-positive MCC cell lines. Microarray-based comparative genomic hybridization revealed a stable genome carrying only a limited number of chromosomal gains and deletions. All cell lines expressed MCC markers Keratin-20 and neuron-specific enolase as well as truncated MCPyV-encoded large T antigen (LT). For five cell lines, we were able to identify the MCPyV-integration sites in introns of different genes. The LT-truncating stop codon mutations and integration sites were affirmed in the respective clinical patient samples. Inverse PCR suggested that three of the cell lines contained MCPyV genomes as concatemers. This notion was confirmed for the two cell lines with known integration sites. Importantly, our observation of distinct stop codon mutations in cell lines with concatemeric MCPyV integration indicates that these LT-truncating mutations occur before integration. In summary, we provide the detailed characterization of six MCPyV-positive MCC cell lines, which are likely to serve as valuable tools in future MCC research.


Assuntos
Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/genética , Poliomavírus das Células de Merkel/genética , Infecções por Polyomavirus/genética , Infecções Tumorais por Vírus/genética , Animais , Carcinoma de Célula de Merkel/virologia , Linhagem Celular Tumoral , Códon de Terminação/genética , Genoma Viral/genética , Humanos , Camundongos , Mutação/genética , Infecções por Polyomavirus/virologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/virologia
3.
Mol Syndromol ; 9(5): 235-240, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30733657

RESUMO

Interstitial 5q22 deletions are relatively rare and usually represented by severe clinical features such as developmental delay and growth retardation. Here, we report a 23-year-old male patient, referred to our laboratory for genetic confirmation of possible familial adenomatous polyposis. MLPA and the subsequent array CGH identified an approximately 8-Mb-sized deletion in the 5q22.2q23.1 locus. Further analysis of the deleted region and the genes within suggested a possible role for the TSSK1B (testis-specific serine/threonine kinase 1) gene in the patient's reproductive capacity. Semen analysis confirmed that the patient's reproductive capability was impaired, and that he suffered from asthenoteratozoospermia. Analysis of the azoospermia factor region on the Y chromosome revealed no microdeletions. Further sequencing tests could not find an alternative explanation for the patient's infertility. This case demonstrates a possible role of TSSK1B in male reproduction.

5.
Pediatr Blood Cancer ; 64(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917594

RESUMO

BACKGROUND: Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disease characterized by oculocutaneous albinism and platelet dysfunction. We report on a novel HPS6 homozygous frameshift variant (c.1919_1920delTC; p.Val640Glyfs*29) in a nonconsanguineous Caucasian family with two affected siblings (index patients) who presented with oculocutaneous albinism at birth and a mild bleeding phenotype during childhood and adolescence. PROCEDURE: Genetic analysis was conducted by panel-based next-generation sequencing (NGS) and Sanger sequencing. Platelets of the index patients, their parents, and the unaffected sister were then comprehensively evaluated by luminoaggregometry, whole blood flow cytometry, immunoblotting, immunofluorescence, and transmission electron microscopy. RESULTS: The homozygous frameshift variant in HPS6 gene detected by panel-based NGS and its segregation in the family was confirmed by Sanger sequencing. Flow cytometric analysis of the patients' platelets revealed a substantially decreased mepacrine uptake and release upon activation with a thrombin receptor agonist. Electron microscopy of resting platelets confirmed diminished dense granule content and enhanced vacuolization. Reduced release of adenosine triphosphate and CD63 neoexposition upon activation indicated not only a lack of dense granule content, but even an impairment of dense granule release. CONCLUSIONS: Our results demonstrate that the novel loss-of-function variant in the HPS6 subunit of biogenesis of lysosome-related organelles complex 2 is pathologic and leads to a reduced platelet dense granules and their release. The findings are compatible with an impaired platelet function and hence an enhanced bleeding risk. In future, a valid genotype-phenotype correlation may translate into best supportive care, especially regarding elective surgery or trauma management.


Assuntos
Antineoplásicos/metabolismo , Plaquetas/metabolismo , Síndrome de Hermanski-Pudlak/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Quinacrina/metabolismo , Trifosfato de Adenosina/metabolismo , Adolescente , Sequência de Bases , Transporte Biológico/genética , Plaquetas/citologia , Criança , Feminino , Citometria de Fluxo , Mutação da Fase de Leitura/genética , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Microscopia Eletrônica , Análise de Sequência de DNA , Deleção de Sequência/genética , Tetraspanina 30/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA