Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Intensive Care Med Exp ; 12(1): 55, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874694

RESUMO

BACKGROUND: Risk stratification and outcome prediction are crucial for intensive care resource planning. In addressing the large data sets of intensive care unit (ICU) patients, we employed the Explainable Boosting Machine (EBM), a novel machine learning model, to identify determinants of acute kidney injury (AKI) in these patients. AKI significantly impacts outcomes in the critically ill. METHODS: An analysis of 3572 ICU patients was conducted. Variables such as average central venous pressure (CVP), mean arterial pressure (MAP), age, gender, and comorbidities were examined. This analysis combined traditional statistical methods with the EBM to gain a detailed understanding of AKI risk factors. RESULTS: Our analysis revealed chronic kidney disease, heart failure, arrhythmias, liver disease, and anemia as significant comorbidities influencing AKI risk, with liver disease and anemia being particularly impactful. Surgical factors were also key; lower GI surgery heightened AKI risk, while neurosurgery was associated with a reduced risk. EBM identified four crucial variables affecting AKI prediction: anemia, liver disease, and average CVP increased AKI risk, whereas neurosurgery decreased it. Age was a progressive risk factor, with risk escalating after the age of 50 years. Hemodynamic instability, marked by a MAP below 65 mmHg, was strongly linked to AKI, showcasing a threshold effect at 60 mmHg. Intriguingly, average CVP was a significant predictor, with a critical threshold at 10.7 mmHg. CONCLUSION: Using an Explainable Boosting Machine enhance the precision in AKI risk factors in ICU patients, providing a more nuanced understanding of known AKI risks. This approach allows for refined predictive modeling of AKI, effectively overcoming the limitations of traditional statistical models.

2.
J Phys Chem Lett ; 14(20): 4644-4651, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37167107

RESUMO

Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH- concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.

3.
J Intensive Care Med ; 36(6): 681-688, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33663244

RESUMO

BACKGROUND: The COVID-19 pandemic reached Germany in spring 2020. No proven treatment for SARS-CoV-2 was available at that time, especially for severe COVID-19-induced ARDS. We determined whether the infusion of mesenchymal stromal cells (MSCs) would help to improve pulmonary function and overall outcome in patients with severe COVID-19 ARDS. We offered MSC infusion as an extended indication to all critically ill COVID-19 patients with a Horovitz index <100. We treated 5 out of 23 patients with severe COVID-19 ARDS with an infusion of MSCs. One million MSCs/kg body weight was infused over 30 minutes, and the process was repeated in 3 patients twice and in 2 patients 3 times. RESULT: Four out of 5 MSC-treated patients compared to 50% of control patients (9 out of 18) received ECMO support (80%). The MSC group showed a higher Murray score on admission than control patients, reflecting more severe pulmonary compromise (3.5 ± 0.2 versus 2.8 ± 0.3). MSC infusion was safe and well tolerated. The MSC group had a significantly higher Horovitz score on discharge than the control group. Compared to controls, patients with MSC treatment showed a significantly lower Murray score upon discharge than controls. In the MSC group, 4 out of 5 patients (80%) survived to discharge and exhibited good pulmonary function, whereas only 8 out of 18 patients (45%) in the control group survived to discharge. CONCLUSION: MSC infusion is a safe treatment for COVID-19 ARDS that improves pulmonary function and overall outcome in this patient population.


Assuntos
COVID-19/complicações , COVID-19/terapia , Cuidados Críticos , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , Adulto , Idoso , COVID-19/mortalidade , Estudos de Coortes , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Respiração Artificial , Síndrome do Desconforto Respiratório/mortalidade , Taxa de Sobrevida , Resultado do Tratamento
4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637648

RESUMO

Endogenous mediators regulating acute inflammatory responses in both the induction and resolution phases of inflammatory processes are pivotal in host defense and tissue homeostasis. Recent studies have identified neuronal guidance proteins characterized in axonal development that display immunomodulatory functions. Here, we identify the neuroimmune guidance cue Semaphorin 7A (Sema7A), which appears to link macrophage (MΦ) metabolic remodeling to inflammation resolution. Sema7A orchestrated MΦ chemotaxis and chemokinesis, activated MΦ differentiation and polarization toward the proresolving M2 phenotype, and promoted leukocyte clearance. Peritoneal MΦSema7A-/- displayed metabolic reprogramming, characterized by reductions in fatty acid oxidation and oxidative phosphorylation, increases in glycolysis and the pentose phosphate pathway, and truncation of the tricarboxylic acid cycle, which resulted in increased levels of the intermediates succinate and fumarate. The low accumulation of citrate in MΦSema7A-/- correlated with the decreased synthesis of prostaglandins, leading to a reduced impact on lipid-mediator class switching and the generation of specialized pro resolving lipid mediators. Signaling network analysis indicated that Sema7A induced the metabolic reprogramming of MΦ by activating the mTOR- and AKT2-signaling pathways. Administration of Sema7ASL4cd orchestrated the resolution response to tissue homeostasis by shortening the resolution interval, promoting tissue protection in murine peritonitis, and enhancing survival in polymicrobial sepsis.


Assuntos
Antígenos CD/genética , Inflamação/etiologia , Semaforinas/genética , Adolescente , Animais , Antígenos CD/metabolismo , Biomarcadores , Plasticidade Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Imunomodulação , Lactente , Recém-Nascido , Inflamação/metabolismo , Inflamação/mortalidade , Inflamação/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Fagocitose/imunologia , Prognóstico , Semaforinas/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais
5.
Crit Care Med ; 47(5): e420-e427, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30730441

RESUMO

OBJECTIVES: Sepsis is associated with a systemic inflammatory reaction, which can result in a life-endangering organ dysfunction. Pro-inflammatory responses during sepsis are characterized by increased activation of leukocytes and platelets, formation of platelet-neutrophil aggregates, and cytokine production. Sequestration of platelet-neutrophil aggregates in the microvasculature contributes to tissue damage during sepsis. At present no effective therapeutic strategy to ameliorate these events is available. In this preclinical pilot study, a novel anti-inflammatory approach was evaluated, which targets nucleoside triphosphate hydrolase activity toward activated platelets via a recombinant fusion protein combining a single-chain antibody against activated glycoprotein IIb/IIIa and the extracellular domain of CD39 (targ-CD39). DESIGN: Experimental animal study and cell culture study. SETTING: University-based experimental laboratory. SUBJECTS: Human dermal microvascular endothelial cells 1, human platelets and neutrophils, and C57BL/6NCrl mice. INTERVENTIONS: Platelet-leukocyte-endothelium interactions were evaluated under inflammatory conditions in vitro and in a murine lipopolysaccharide-induced sepsis model in vivo. The outcome of polymicrobial sepsis was evaluated in a murine cecal ligation and puncture model. To evaluate the anti-inflammatory potential of activated platelet targeted nucleoside triphosphate hydrolase activity, we employed a potato apyrase in vitro and in vivo, as well as targ-CD39 and as a control, nontarg-CD39 in vivo. MEASUREMENTS AND MAIN RESULTS: Under conditions of sepsis, agents with nucleoside triphosphate hydrolase activity decreased platelet-leukocyte-endothelium interaction, transcription of pro-inflammatory cytokines, microvascular platelet-neutrophil aggregate sequestration, activation marker expression on platelets and neutrophils contained in these aggregates, leukocyte extravasation, and organ damage. Targ-CD39 had the strongest effect on these variables and retained hemostasis in contrast to nontarg-CD39 and potato apyrase. Most importantly, targ-CD39 improved survival in the cecal ligation and puncture model to a stronger extent then nontarg-CD39 and potato apyrase. CONCLUSIONS: Targeting nucleoside triphosphate hydrolase activity (CD39) toward activated platelets is a promising new treatment concept to decrease systemic inflammation and mortality of sepsis. This innovative therapeutic approach warrants further development toward clinical application.


Assuntos
Plaquetas/metabolismo , Células Endoteliais/metabolismo , Sepse/imunologia , Adenosina Trifosfatases/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Projetos Piloto
6.
Nat Commun ; 10(1): 633, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733433

RESUMO

The bidirectional communication between the immune and nervous system is important in regulating immune responses. Here we show that the adrenergic nerves of sympathetic nervous system orchestrate inflammation resolution and regenerative programs by modulating repulsive guidance molecule A (RGM-A). In murine peritonitis, adrenergic nerves and RGM-A show bidirectional activation by stimulating the mutual expression and exhibit a higher potency for the cessation of neutrophil infiltration; this reduction is accompanied by increased pro-resolving monocyte or macrophage recruitment, polymorphonucleocyte clearance and specialized pro-resolving lipid mediators production at sites of injury. Chemical sympathectomy results in hyperinflammation and ineffective resolution in mice, while RGM-A treatments reverse these phenotypes. Signalling network analyses imply that RGM-A and ß2AR agonist regulate monocyte activation by suppressing NF-κB activity but activating RICTOR and PI3K/AKT signalling. Our results thus illustrate the function of sympathetic nervous system and RGM-A in regulating resolution and tissue repair in a murine acute peritonitis model.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso Simpático/imunologia , Sistema Nervoso Simpático/metabolismo , Animais , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peritonite/imunologia , Peritonite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
J Clin Invest ; 128(10): 4711-4726, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222138

RESUMO

The resolution of inflammation is an active process that is coordinated by endogenous mediators. Previous studies have demonstrated the immunomodulatory properties of the axonal guidance proteins in the initial phase of acute inflammation. We hypothesized that the neuronal guidance protein neogenin (Neo1) modulates mechanisms of inflammation resolution. In murine peritonitis, Neo1 deficiency (Neo1-/-) resulted in higher efficacies in reducing neutrophil migration into injury sites, increasing neutrophil apoptosis, actuating PMN phagocytosis, and increasing the endogenous biosynthesis of specialized proresolving mediators, such as lipoxin A4, maresin-1, and protectin DX. Neo1 expression was limited to Neo1-expressing Ly6Chi monocytes, and Neo1 deficiency induced monocyte polarization toward an antiinflammatory and proresolving phenotype. Signaling network analysis revealed that Neo1-/- monocytes mediate their immunomodulatory effects specifically by activating the PI3K/AKT pathway and suppressing the TGF-ß pathway. In a cohort of 59 critically ill, intensive care unit (ICU) pediatric patients, we found a strong correlation between Neo1 blood plasma levels and abdominal compartment syndrome, Pediatric Risk of Mortality III (PRISM-III) score, and ICU length of stay and mortality. Together, these findings identify a crucial role for Neo1 in regulating tissue regeneration and resolution of inflammation, and determined Neo1 to be a predictor of morbidity and mortality in critically ill children affected by clinical inflammation.


Assuntos
Hipertensão Intra-Abdominal/sangue , Proteínas do Tecido Nervoso/sangue , Receptores de Superfície Celular/sangue , Regeneração , Adolescente , Animais , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Hipertensão Intra-Abdominal/genética , Hipertensão Intra-Abdominal/imunologia , Hipertensão Intra-Abdominal/patologia , Masculino , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Infiltração de Neutrófilos/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Peritonite/sangue , Peritonite/genética , Peritonite/imunologia , Peritonite/patologia , Fagocitose/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
8.
Eur J Med Chem ; 140: 305-320, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28964935

RESUMO

The enzyme Δ24-dehydrocholesterol reductase (DHCR24) catalyzes the reduction of the Δ24-double bond in the side chain of cholesterol precursors. Recent biochemical investigations fuel the hope that inhibition of DHCR24, resulting in an accumulation of desmosterol, can open new therapeutic options for treating hepatitis C virus infections, certain forms of cancer and atherosclerosis. In turn, there is a high need for selective, potent and non-toxic inhibitors of DHCR24. Previous reports as well as our re-evaluation showed that established DHCR24 inhibitors are not suitable for this purpose. Based on the lathosterol-derived amide MGI-21 (IC50 823 nM for inhibition of overall cholesterol biosynthesis in HL-60 cells) we performed a systematic variation of the side chain functionality and identified the steroidal 3,22-diols 29 and 30, as well as several esters thereof, as extremely potent (IC50 < 5 nM), selective, and non-toxic DHCR24 inhibitors. In mice, diester 27 (SH-42) led to a significant increase in plasma desmosterol levels. The new inhibitors described here are valuable tools for investigating the therapeutic potential of DHCR24 inhibition.


Assuntos
Desmosterol/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Animais , Inibidores Enzimáticos/química , Células HL-60 , Humanos , Concentração Inibidora 50 , Camundongos , Análise Espectral
9.
Hepatology ; 63(5): 1689-705, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26573873

RESUMO

UNLABELLED: Hepatic ischemia/reperfusion (I/R) is a major adverse reaction to liver transplantation, hemorrhagic shock, or resection. Recently, the anti-inflammatory properties of the axonal guidance cue netrin-1 were reported. Here, we demonstrate that netrin-1 also impacts the resolution of inflammation and promotes hepatic repair and regeneration during liver I/R injury. In initial studies, we investigated the induction of netrin-1 and its receptors in murine liver tissues after I/R injury. Hepatic I/R injury was performed in mice with a partial genetic netrin-1 deficiency (Ntn1(+/-) ) or wild-type C57BL/6 treated with exogenous netrin-1 to examine the endogenous and therapeutically administered impact of netrin-1. These investigations were corroborated by studies determining the characteristics of intravascular leukocyte flow, clearance of apoptotic neutrophils (polymorphonuclear cells [PMNs]), production of specialized proresolving lipid mediators (SPMs), generation of specific growth factors contributing to the resolution of inflammation, and liver repair. Hepatic I/R was associated with a significant reduction of netrin-1 transcript and protein in murine liver tissue. Subsequent studies in netrin-1-deficient mice revealed lower efficacies in reducing PMN infiltration, proinflammatory cytokine levels, and hepatic-specific injury enzymes. Conversely, mice treated with exogenous netrin-1 exhibited increased liver protection and repair, reducing neutrophil influx into the injury site, decreasing proinflammatory mediators, increasing efferocytosis of apoptotic PMNs, and stimulating local endogenous biosynthesis of SPMs and the generation of specific growth factors. Finally, genetic studies implicated the A2B adenosine receptor in netrin-1-mediated protection during hepatic I/R injury. CONCLUSION: The present study indicates a previously unrecognized role for netrin-1 in liver protection and its contribution to tissue homeostasis and regeneration.


Assuntos
Regeneração Hepática , Fatores de Crescimento Neural/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Hepatite/fisiopatologia , Humanos , Lipoxinas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Netrina , Netrina-1 , Neutrófilos/fisiologia , Receptores de Superfície Celular/fisiologia , Traumatismo por Reperfusão/fisiopatologia
10.
Crit Care Med ; 42(9): e610-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25029243

RESUMO

OBJECTIVE: Liver ischemia and reperfusion injury is a common source of significant morbidity and mortality following liver transplantation, hemorrhagic shock, or major hepatic surgery. Based on studies showing a critical role for the neuronal guidance receptor neogenin (Neo1) outside the nervous system in mediating tissue adaption during acute inflammation, we hypothesized that Neo1 enhances hepatic ischemia and reperfusion injury. DESIGN: Animal study. SETTING: University-based experimental laboratory. SUBJECTS: Wid-type, neogenin deficient and chimeric mice. INTERVENTIONS: Neogenin expression was evaluated during inflammatory stimulation in vitro and during ischemia and reperfusion injury in vivo, intravital microscopy performed to study intravascular flow characteristics. The extent of liver injury was evaluated using histology, serum levels of lactate dehydrogenase, aspartate, and alanine aminotransferase. The functional role of Neo1 during liver IR was evaluated in mice with gene targeted repression of neogenin (Neo1-/-), bone marrow chimeric animals and controls. In addition, functional inhibition of neogenin was performed using antibody injection. MEASUREMENTS AND MAIN RESULTS: We observed an induction of Neo1 during inflammation in vitro and ischemia and reperfusion in vivo. Intravital microscopy demonstrated a decreased ability of Neo1 leukocytes to attach to endothelial vascular wall during inflammation. Subsequent studies in Neo1 mice showed attenuated serum levels of lactate dehydrogenase, aspartate, alanine, and proinflammatory cytokines during hepatic ischemia and reperfusion injury. This was associated with improved hepatic histology scores. Studies in chimeric animals demonstrated that the hematopoietic Neo1 expression to be crucial for the observed results. Treatment with an anti-Neo1 antibody resulted in a significant reduction of experimental hepatic ischemia and reperfusion injury, involving attenuated variable of lactate dehydrogenase, alanine, aspartate, and cytokine levels. CONCLUSIONS: These data provide a unique role for Neo1 in the development of hepatic ischemia and reperfusion injury and identified Neo1 as a potential target to prevent liver dysfunction in the future.


Assuntos
Hepatopatias/epidemiologia , Proteínas de Membrana/biossíntese , Traumatismo por Reperfusão/prevenção & controle , Animais , Inflamação/fisiopatologia , Fígado/fisiopatologia , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo
11.
Eur J Gastroenterol Hepatol ; 21(9): 1024-31, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19352190

RESUMO

BACKGROUND: Pancreatic enzyme preparations are a life-saving substitution for a pivotal physiological function of the entire organism that is impaired in chronic pancreatitis, cystic fibrosis and other diseases with exocrine pancreatic insufficiency. Pancreatic enzyme preparations, generically called pancreatin, are not alike. Rather, they present a broad variety of pancreatin composition. AIM: The properties of a set of commercially available pancreatin preparations were investigated in light of the physiological tasks such enzymes must fulfill during the normal digestive process. METHODS: Measurements of size, surface, acid resistance, release of enzymes, pharmacokinetics and batch consistency were undertaken. RESULTS: Although all pancreatin preparations contain the declared lipase units and are acid-stable, a wide variation was observed in the particle size (pyloric passage), specific surface area and release kinetics of lipase activity at pH 6 (duodenum). CONCLUSION: At present, available pancreatin preparations vary widely with respect to investigated parameters, which may have consequences for facilitating optimal digestion.


Assuntos
Amilases/análise , Digestão/efeitos dos fármacos , Insuficiência Pancreática Exócrina/tratamento farmacológico , Fármacos Gastrointestinais/química , Lipase/análise , Pancreatina/química , Amilases/farmacocinética , Amilases/uso terapêutico , Insuficiência Pancreática Exócrina/enzimologia , Fármacos Gastrointestinais/farmacocinética , Fármacos Gastrointestinais/uso terapêutico , Humanos , Lipase/farmacocinética , Lipase/uso terapêutico , Microesferas , Pancreatina/farmacocinética , Pancreatina/uso terapêutico , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA