RESUMO
BACKGROUND: Identification of human leukocyte antigen (HLA) types from DNA-sequenced human samples is important in organ transplantation and cancer immunotherapy and remains a challenging task considering sequence homology and extreme polymorphism of HLA genes. RESULTS: We present Orthanq, a novel statistical model and corresponding application for transparent and uncertainty-aware quantification of haplotypes. We utilize our approach to perform HLA typing while, for the first time, reporting uncertainty of predictions and transparently observing mutations beyond reported HLA types. Using 99 gold standard samples from 1000 Genomes, Illumina Platinum Genomes and Genome In a Bottle projects, we show that Orthanq can provide overall superior accuracy and shorter runtimes than state-of-the-art HLA typers. CONCLUSIONS: Orthanq is the first approach that allows to directly utilize existing pangenome alignments and type all HLA loci. Moreover, it can be generalized for usages beyond HLA typing, e.g. for virus lineage quantification. Orthanq is available under https://orthanq.github.io .
Assuntos
Antígenos HLA , Haplótipos , Teste de Histocompatibilidade , Humanos , Haplótipos/genética , Antígenos HLA/genética , Teste de Histocompatibilidade/métodos , Software , Incerteza , Análise de Sequência de DNA/métodos , Modelos Estatísticos , AlgoritmosRESUMO
Antibodies targeting the immune checkpoint molecules PD-1, PD-L1 and CTLA-4, administered alone or in combination with chemotherapy, are the standard of care in most patients with metastatic non-small-cell lung cancers. When given before curative surgery, tumor responses and improved event-free survival are achieved. New antibody combinations may be more efficacious and tolerable. In an ongoing, open-label phase 2 study, 60 biomarker-unselected, treatment-naive patients with resectable non-small-cell lung cancer were randomized to receive two preoperative doses of nivolumab (anti-PD-1) with or without relatlimab (anti-LAG-3) antibody therapy. The primary study endpoint was the feasibility of surgery within 43 days, which was met by all patients. Curative resection was achieved in 95% of patients. Secondary endpoints included pathological and radiographic response rates, pathologically complete resection rates, disease-free and overall survival rates, and safety. Major pathological (≤10% viable tumor cells) and objective radiographic responses were achieved in 27% and 10% (nivolumab) and in 30% and 27% (nivolumab and relatlimab) of patients, respectively. In 100% (nivolumab) and 90% (nivolumab and relatlimab) of patients, tumors and lymph nodes were pathologically completely resected. With 12 months median duration of follow-up, disease-free survival and overall survival rates at 12 months were 89% and 93% (nivolumab), and 93% and 100% (nivolumab and relatlimab). Both treatments were safe with grade ≥3 treatment-emergent adverse events reported in 10% and 13% of patients per study arm. Exploratory analyses provided insights into biological processes triggered by preoperative immunotherapy. This study establishes the feasibility and safety of dual targeting of PD-1 and LAG-3 before lung cancer surgery.ClinicalTrials.gov Indentifier: NCT04205552 .
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia Neoadjuvante , Nivolumabe , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Nivolumabe/uso terapêutico , Nivolumabe/administração & dosagem , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Proteína do Gene 3 de Ativação de Linfócitos , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antígenos CD , Idoso de 80 Anos ou maisRESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors (MEKi) failed due to inherent and acquired resistance mechanisms. To gain insights into molecular changes during the formation of resistance to oncogenic MAPK pathway inhibition, we utilized short-term passaged primary tumor cells from ten PDACs of genetically engineered mice. We followed gain and loss of resistance upon MEKi exposure and withdrawal by longitudinal integrative analysis of whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and mass spectrometry data. RESULTS: We found that resistant cell populations under increasing MEKi treatment evolved by the expansion of a single clone but were not a direct consequence of known resistance-conferring mutations. Rather, resistant cells showed adaptive DNA hypermethylation of 209 and hypomethylation of 8 genomic sites, most of which overlap with regulatory elements known to be active in murine PDAC cells. Both DNA methylation changes and MEKi resistance were transient and reversible upon drug withdrawal. Furthermore, MEKi resistance could be reversed by DNA methyltransferase inhibition with remarkable sensitivity exclusively in the resistant cells. CONCLUSION: Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treatment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic targeting.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Metilação de DNA , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , DNA/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Linhagem Celular Tumoral , MutaçãoRESUMO
The G protein-coupled receptor (GPCR) US28 encoded by the human cytomegalovirus (HCMV) is associated with accelerated progression of glioblastomas, aggressive brain tumors with a generally poor prognosis. Here, we showed that US28 increased the malignancy of U251 glioblastoma cells by enhancing signaling mediated by sphingosine-1-phosphate (S1P), a bioactive lipid that stimulates oncogenic pathways in glioblastoma. US28 expression increased the abundance of the key components of the S1P signaling axis, including an enzyme that generates S1P [sphingosine kinase 1 (SK1)], an S1P receptor [S1P receptor 1 (S1P1)], and S1P itself. Enhanced S1P signaling promoted glioblastoma cell proliferation and survival by activating the kinases AKT and CHK1 and the transcriptional regulators cMYC and STAT3 and by increasing the abundance of cancerous inhibitor of PP2A (CIP2A), driving several feed-forward signaling loops. Inhibition of S1P signaling abrogated the proliferative and anti-apoptotic effects of US28. US28 also activated the S1P signaling axis in HCMV-infected cells. This study uncovers central roles for S1P and CIP2A in feed-forward signaling that contributes to the US28-mediated exacerbation of glioblastoma.
Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Receptores de Esfingosina-1-Fosfato/genética , Transdução de Sinais , Lisofosfolipídeos/metabolismo , Esfingosina/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismoRESUMO
Circulating tumor DNA (ctDNA) from circulating free DNA (cfDNA) in GIST is of interest for the detection of heterogeneous resistance mutations and treatment monitoring. However, methodologies for use in a local setting are not standardized and are error-prone and difficult to interpret. We established a workflow to evaluate routine tumor tissue NGS (Illumina-based next generation sequencing) panels and pipelines for ctDNA sequencing in an academic setting. Regular blood collection (Sarstedt) EDTA tubes were sufficient for direct processing whereas specialized tubes (STRECK) were better for transportation. Mutation detection rate was higher in automatically extracted (AE) than manually extracted (ME) samples. Sensitivity and specificity for specific mutation detection was higher using digital droplet (dd)PCR compared to NGS. In a retrospective analysis of NGS and clinical data (133 samples from 38 patients), cfDNA concentration correlated with tumor load and mutation detection. A clinical routine pipeline and a novel research pipeline yielded different results, but known and resistance-mediating mutations were detected by both and correlated with the resistance spectrum of TKIs used. In conclusion, NGS routine panel analysis was not sensitive and specific enough to replace solid biopsies in GIST. However, more precise methods (hybridization capture NGS, ddPCR) may comprise important research tools to investigate resistance. Future clinical trials need to compare methodology and protocols.
RESUMO
Occurrence of extra-chromosomal circular DNA is a phenomenon frequently observed in tumor cells, and the presence of such DNA has been recognized as a marker of adverse outcome across cancer types. We here describe a computational workflow for identification of DNA circles from long-read sequencing data. The workflow is implemented based on the Snakemake workflow management system. Its key step uses a graph-theoretic approach to identify putative circular fragments validated on simulated reads. We then demonstrate robustness of our approach using nanopore sequencing of selectively enriched circular DNA by highly sensitive and specific recovery of plasmids and the mitochondrial genome, which is the only circular DNA in normal human cells. Finally, we show that the workflow facilitates detection of larger circular DNA fragments containing extrachromosomal copies of the MYCN oncogene and the respective breakpoints, which is a potentially useful application in disease monitoring of several cancer types.
RESUMO
OBJECTIVE: Current predictive biomarkers for PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1)-directed immunotherapy in non-small cell lung cancer (NSCLC) mostly focus on features of tumour cells. However, the tumour microenvironment and immune context are expected to play major roles in governing therapy response. Against this background, we set out to apply context-sensitive feature selection and machine learning approaches on expression profiles of immune-related genes in diagnostic biopsies of patients with stage IV NSCLC. METHODS: RNA expression levels were determined using the NanoString nCounter platform in formalin-fixed paraffin-embedded tumour biopsies obtained during the diagnostic workup of stage IV NSCLC from two thoracic oncology centres. A 770-gene panel covering immune-related genes and control genes was used. We applied supervised machine learning methods for feature selection and generation of predictive models. RESULTS: Feature selection and model creation were based on a training cohort of 55 patients with recurrent NSCLC treated with PD-1/PD-L1 antibody therapy. Resulting models identified patients with superior outcomes to immunotherapy, as validated in two subsequently recruited, separate patient cohorts (n = 67, hazard ratio = 0.46, p = 0.035). The predictive information obtained from these models was orthogonal to PD-L1 expression as per immunohistochemistry: Selecting by PD-L1 positivity at immunohistochemistry plus model prediction identified patients with highly favourable outcomes. Independence of PD-L1 positivity and model predictions were confirmed in multivariate analysis. Visualisation of the models revealed the predictive superiority of the entire 7-gene context over any single gene. CONCLUSION: Using context-sensitive assays and bioinformatics capturing the tumour immune context allows precise prediction of response to PD-1/PD-L1-directed immunotherapy in NSCLC.
Assuntos
Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Expressão Gênica/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Estudos de Coortes , Feminino , Humanos , Imuno-Histoquímica/métodos , Imunoterapia/métodos , Neoplasias Pulmonares/imunologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologiaRESUMO
Understanding tumor resistance to T cell immunotherapies is critical to improve patient outcomes. Our study revealed a role for transcriptional suppression of the tumor-intrinsic HLA class I (HLA-I) antigen processing and presentation machinery (APM) in therapy resistance. Low HLA-I APM mRNA levels in melanoma metastases before immune checkpoint blockade (ICB) correlated with nonresponsiveness to therapy and poor clinical outcome. Patient-derived melanoma cells with silenced HLA-I APM escaped recognition by autologous CD8+ T cells. However, targeted activation of the innate immunoreceptor RIG-I initiated de novo HLA-I APM transcription, thereby overcoming T cell resistance. Antigen presentation was restored in interferon-sensitive (IFN-sensitive) but also immunoedited IFN-resistant melanoma models through RIG-I-dependent stimulation of an IFN-independent salvage pathway involving IRF1 and IRF3. Likewise, enhanced HLA-I APM expression was detected in RIG-Ihi (DDX58hi) melanoma biopsies, correlating with improved patient survival. Induction of HLA-I APM by RIG-I synergized with antibodies blocking PD-1 and TIGIT inhibitory checkpoints in boosting the antitumor T cell activity of ICB nonresponders. Overall, the herein-identified IFN-independent effect of RIG-I on tumor antigen presentation and T cell recognition proposes innate immunoreceptor targeting as a strategy to overcome intrinsic T cell resistance of IFN-sensitive and IFN-resistant melanomas and improve clinical outcomes in immunotherapy.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteína DEAD-box 58/imunologia , Inativação Gênica , Imunidade Celular , Imunoterapia , Melanoma Experimental/imunologia , Proteínas de Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Proteína DEAD-box 58/genética , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Receptores Imunológicos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The notion of cancer as a complex evolutionary system has been validated by in-depth molecular analyses of tumor progression over the last years. While a complex interplay of cell-autonomous programs and cell-cell interactions determines proliferation and differentiation during normal development, intrinsic and acquired plasticity of cancer cells allow for evasion of growth factor limitations, apoptotic signals, or attacks from the immune system. Treatment-induced molecular selection processes have been described by a number of studies already, but understanding of those events facilitating metastatic spread, organ-specific homing, and resistance to anoikis is still in its early days. In principle, somatic events giving rise to cancer progression should be easier to follow in childhood tumors bearing fewer mutations and genomic aberrations than their counterparts in adulthood. We have previously reported on the genetic events accompanying relapsing neuroblastoma, a solid tumor of early childhood. Our results indicated significantly higher single nucleotide variants in relapse tumors, gave hints for branched tumor evolution upon treatment and clonal selection as deduced from shifts in allelic frequencies between primary and relapsing neuroblastoma. Here, we will review these findings and give an outlook on dealing with intratumoral heterogeneity and sub-clonal diversity in neuroblastoma for future targeted treatments.
Assuntos
Células Clonais/patologia , Mutação/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Animais , Humanos , Imunoterapia , Neuroblastoma/imunologia , Neuroblastoma/terapia , Recidiva , Microambiente TumoralRESUMO
More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease.
Assuntos
Xenoenxertos , Leucemia/patologia , Linfoma/patologia , Bancos de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Linhagem da Célula , Feminino , Perfilação da Expressão Gênica , Genes p53 , Humanos , Internet , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Leucemia/metabolismo , Leucemia Experimental/tratamento farmacológico , Linfoma/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Transplante de Neoplasias , Fenótipo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Proteoma , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Distribuição Aleatória , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Projetos de Pesquisa , TranscriptomaRESUMO
Dysregulation of the cell cycle and cyclin-dependent kinases (cdks) is a hallmark of cancer cells. Intervention with cdk function is currently evaluated as a therapeutic option in many cancer types including neuroblastoma (NB), a common solid tumor of childhood. Re-analyses of mRNA profiling data from primary NB revealed that high level mRNA expression of both cdk1 and its corresponding cyclin, CCNB1, were significantly associated with worse patient outcome independent of MYCN amplification, a strong indicator of adverse NB prognosis. Cdk1 as well as CCNB1 expression were readily detectable in all embryonal tumor cell lines investigated. Pharmacological inhibition or siRNA-mediated knockdown of cdk1/CCNB1 induced proliferation arrest independent of MYCN status in NB cells. Sensitivity to cdk1 inhibition was modulated by TP53, which was demonstrated using isogenic cells with wild-type TP53 expressing either dominant-negative p53 or a short hairpin RNA directed against TP53. Apoptosis induced by cdk1 inhibition was dependent on caspase activation and was concomitant with upregulation of transcriptional targets of TP53. Our results confirm an essential role for the cdk1/CCNB1 complex in tumor cell survival. As relapsing embryonal tumors often present with p53 pathway alterations, these findings have potential implications for therapy approaches targeting cdks.
Assuntos
Ciclina B1/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Neuroblastoma/patologia , Rabdomiossarcoma/patologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína Quinase CDC2 , Caspase 8/metabolismo , Caspase 9/metabolismo , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ciclina B1/genética , Quinases Ciclina-Dependentes/genética , Ativação Enzimática/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Lactente , Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Quinolinas/farmacologia , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno , Tiazóis/farmacologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genéticaRESUMO
Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.
Assuntos
Regulação Neoplásica da Expressão Gênica , Mutação , Recidiva Local de Neoplasia/genética , Neuroblastoma/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , DNA Helicases/genética , Exoma/genética , Perfilação da Expressão Gênica/métodos , Frequência do Gene , Fatores de Troca do Nucleotídeo Guanina/genética , Via de Sinalização Hippo , Humanos , Hibridização in Situ Fluorescente , Proteínas do Tecido Nervoso/genética , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Análise de Sequência de DNA/métodos , Transdução de Sinais/genética , Fatores de Transcrição , Proteínas de Sinalização YAPRESUMO
Neuroblastoma is the most common extracranial solid tumor of childhood, and accounts for â¼15% of all childhood cancer deaths. The histone demethylase, lysine-specific demethylase 1 (KDM1A, previously known as LSD1), is strongly expressed in neuroblastomas, and overexpression correlates with poor patient prognosis. Inducing differentiation in neuroblastoma cells has previously been shown to down regulate KDM1A, and siRNA-mediated KDM1A knockdown inhibited neuroblastoma cell viability. The microRNA, miR-137, has been reported to be downregulated in several human cancers, and KDM1A mRNA was reported as a putative target of miR-137 in colon cancer. We hypothesized that miR-137 might have a tumor-suppressive role in neuroblastoma mediated via downregulation of KDM1A. Indeed, low levels of miR-137 expression in primary neuroblastomas correlated with poor patient prognosis. Re-expressing miR-137 in neuroblastoma cell lines increased apoptosis and decreased cell viability and proliferation. KDM1A mRNA was repressed by miR-137 in neuroblastoma cells, and was validated as a direct target of miR-137 using reporter assays in SHEP and HEK293 cells. Furthermore, siRNA-mediated KDM1A knockdown phenocopied the miR-137 re-expression phenotype in neuroblastoma cells. We conclude that miR-137 directly targets KDM1A mRNA in neuroblastoma cells, and activates cell properties consistent with tumor suppression. Therapeutic strategies to re-express miR-137 in neuroblastomas could be useful to reduce tumor aggressiveness.
Assuntos
Genes Supressores de Tumor , Histona Desmetilases/genética , MicroRNAs/fisiologia , Neuroblastoma/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Histona Desmetilases/fisiologia , Humanos , MicroRNAs/análiseRESUMO
In many cancer types, MYC proteins are known to be master regulators of the RNA-producing machinery. Neuroblastoma is a tumor of early childhood characterized by heterogeneous clinical courses. Amplification of the MYCN oncogene is a marker of poor patient outcome in this disease. Here, we investigated the MYCN-driven transcriptome of 20 primary neuroblastomas with and without MYCN amplification using next-generation RNA sequencing and compared the results to those from an in vitro cell model for inducible MYCN (SH-EP MYCN-ER). Transcriptome sequencing produced 30-90 million mappable reads for each dataset. The most abundant RNA species was mRNA, but snoRNAs, pseudogenes and processed transcripts were also recovered. A total of 223 genes were significantly differentially expressed between MYCN-amplified and single-copy tumors. Of those genes associated with MYCN both in vitro and in vivo, 32% of MYCN upregulated and 37% of MYCN downregulated genes were verified either as previously identified MYCN targets or as having MYCN-binding motifs. Pathway analyses suggested transcriptomal upregulation of mTOR-related genes by MYCN. MYCN-driven neuroblastomas in mice displayed activation of the mTOR pathway on the protein level and activation of MYCN in SH-EP MYCN-ER cells resulted in high sensitivity toward mTOR inhibition in vitro. We conclude that next-generation RNA sequencing allows for the identification of MYCN regulated transcripts in neuroblastoma. As our results suggest MYCN involvement in mTOR pathway activation on the transcriptional level, mTOR inhibitors should be further evaluated for the treatment of MYCN-amplified neuroblastoma.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Animais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA não Traduzido , Análise de Sequência de RNA , Células Tumorais CultivadasRESUMO
Using both high-throughput sequencing and real-time PCR, the miRNA transcriptome can be analyzed in complementary ways. We describe the necessary bioinformatics pipeline, including software tools, and key methodological steps in the process, such as adapter removal, read mapping, normalization, and multiple testing issues for biomarker identification. The methods are exemplified by the analysis of five favorable (event-free survival) vs. five unfavorable (died of disease) neuroblastoma tumor samples with a total of over 188 million reads.
Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Algoritmos , Biomarcadores Tumorais/metabolismo , Mapeamento Cromossômico , Bases de Dados Genéticas , Perfilação da Expressão Gênica/normas , Genoma Humano , Humanos , MicroRNAs/isolamento & purificação , MicroRNAs/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Controle de Qualidade , Padrões de Referência , Homologia de Sequência do Ácido Nucleico , SoftwareRESUMO
The frequency of neuroleptic malignant syndrome (NMS) after clozapine or olanzapine is low and often of non-serious nature. A 49 year-old female patient developed NMS 12 days after olanzapine re-exposure. Olanzapine was stopped, the patient was transferred to an ICU and received a course of nine uni- and bilateral ECT treatments. This led to remission. 14 months earlier the patient had presented with a first severe NMS episode after haloperidol depot injection and 4 days after starting oral clozapine. Following the first NMS episode olanzapine (20 mg per day) was administered for 11 months without adverse effects.