Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31428936

RESUMO

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Epigênese Genética , Glioma/metabolismo , Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Metiltransferases/genética , Camundongos Nus , Proteínas Musculares/genética , Transplante de Neoplasias , RNA Ribossômico 28S
2.
Sci Rep ; 8(1): 11904, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093689

RESUMO

The entire chemical modification repertoire of yeast ribosomal RNAs and the enzymes responsible for it have recently been identified. Nonetheless, in most cases the precise roles played by these chemical modifications in ribosome structure, function and regulation remain totally unclear. Previously, we demonstrated that yeast Rrp8 methylates m1A645 of 25S rRNA in yeast. Here, using mung bean nuclease protection assays in combination with quantitative RP-HPLC and primer extension, we report that 25S/28S rRNA of S. pombe, C. albicans and humans also contain a single m1A methylation in the helix 25.1. We characterized nucleomethylin (NML) as a human homolog of yeast Rrp8 and demonstrate that NML catalyzes the m1A1322 methylation of 28S rRNA in humans. Our in vivo structural probing of 25S rRNA, using both DMS and SHAPE, revealed that the loss of the Rrp8-catalyzed m1A modification alters the conformation of domain I of yeast 25S rRNA causing translation initiation defects detectable as halfmers formation, likely because of incompetent loading of 60S on the 43S-preinitiation complex. Quantitative proteomic analysis of the yeast Δrrp8 mutant strain using 2D-DIGE, revealed that loss of m1A645 impacts production of specific set of proteins involved in carbohydrate metabolism, translation and ribosome synthesis. In mouse, NML has been characterized as a metabolic disease-associated gene linked to obesity. Our findings in yeast also point to a role of Rrp8 in primary metabolism. In conclusion, the m1A modification is crucial for maintaining an optimal 60S conformation, which in turn is important for regulating the production of key metabolic enzymes.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Adenosina/metabolismo , Sequência de Bases , Eletroforese em Gel Bidimensional , Células HCT116 , Humanos , Metilação , Metiltransferases/genética , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Domínios Proteicos , Proteína O-Metiltransferase , Proteômica/métodos , RNA Ribossômico/química , RNA Ribossômico/genética , Proteínas de Ligação a RNA , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores/química , Subunidades Ribossômicas Maiores/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Biochim Biophys Acta ; 1862(9): 1558-69, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27240544

RESUMO

Ataxin-2 is a cytoplasmic protein, product of the ATXN2 gene, whose deficiency leads to obesity, while its gain-of-function leads to neural atrophy. Ataxin-2 affects RNA homeostasis, but its effects are unclear. Here, immunofluorescence analysis suggested that ataxin-2 associates with 48S pre-initiation components at stress granules in neurons and mouse embryonic fibroblasts, but is not essential for stress granule formation. Coimmunoprecipitation analysis showed associations of ataxin-2 with initiation factors, which were concentrated at monosome fractions of polysome gradients like ataxin-2, unlike its known interactor PABP. Mouse embryonic fibroblasts lacking ataxin-2 showed increased phosphorylation of translation modulators 4E-BP1 and ribosomal protein S6 through the PI3K-mTOR pathways. Indeed, human neuroblastoma cells after trophic deprivation showed a strong induction of ATXN2 transcript via mTOR inhibition. Our results support the notion that ataxin-2 is a nutritional stress-inducible modulator of mRNA translation at the pre-initiation complex.


Assuntos
Ataxina-2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Arsenitos/toxicidade , Ataxina-2/antagonistas & inibidores , Ataxina-2/genética , Linhagem Celular Tumoral , Células Cultivadas , Fatores de Iniciação em Eucariotos/metabolismo , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteína S6 Ribossômica/metabolismo , Inanição/genética , Inanição/metabolismo , Estresse Fisiológico
4.
Nucleic Acids Res ; 44(9): 4304-16, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27084949

RESUMO

The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes.


Assuntos
Alquil e Aril Transferases/fisiologia , RNA Ribossômico 18S/biossíntese , Saccharomyces cerevisiae/enzimologia , Alquil e Aril Transferases/química , Domínio Catalítico , Cristalografia por Raios X , Células HCT116 , Humanos , Ligação de Hidrogênio , Sequências Repetidas Invertidas , Modelos Moleculares , Ligação Proteica , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/química , S-Adenosilmetionina/química
5.
Nat Chem Biol ; 11(9): 625-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26284661
6.
Nucleic Acids Res ; 42(5): 3246-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335083

RESUMO

RNA contains various chemical modifications that expand its otherwise limited repertoire to mediate complex processes like translation and gene regulation. 25S rRNA of the large subunit of ribosome contains eight base methylations. Except for the methylation of uridine residues, methyltransferases for all other known base methylations have been recently identified. Here we report the identification of BMT5 (YIL096C) and BMT6 (YLR063W), two previously uncharacterized genes, to be responsible for m3U2634 and m3U2843 methylation of the 25S rRNA, respectively. These genes were identified by RP-HPLC screening of all deletion mutants of putative RNA methyltransferases and were confirmed by gene complementation and phenotypic characterization. Both proteins belong to Rossmann-fold-like methyltransferases and the point mutations in the S-adenosyl-L-methionine binding pocket abolish the methylation reaction. Bmt5 localizes in the nucleolus, whereas Bmt6 is localized predominantly in the cytoplasm. Furthermore, we showed that 25S rRNA of yeast does not contain any m5U residues as previously predicted. With Bmt5 and Bmt6, all base methyltransferases of the 25S rRNA have been identified. This will facilitate the analyses of the significance of these modifications in ribosome function and cellular physiology.


Assuntos
Metiltransferases/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Uridina/metabolismo , Deleção de Genes , Metilação , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Proteínas Nucleares/isolamento & purificação , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
7.
Proc Natl Acad Sci U S A ; 110(38): 15253-8, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003121

RESUMO

Factor activating Pos9 (Fap7) is an essential ribosome biogenesis factor important for the assembly of the small ribosomal subunit with an uncommon dual ATPase and adenylate kinase activity. Depletion of Fap7 or mutations in its ATPase motifs lead to defects in small ribosomal subunit rRNA maturation, the absence of ribosomal protein Rps14 from the assembled subunit, and retention of the nascent small subunit in a quality control complex with the large ribosomal subunit. The molecular basis for the role of Fap7 in ribosome biogenesis is, however, not yet understood. Here we show that Fap7 regulates multiple interactions between the precursor rRNA, ribosomal proteins, and ribosome assembly factors in a hierarchical manner. Fap7 binds to Rps14 with a very high affinity. Fap7 binding blocks both rRNA-binding elements of Rps14, suggesting that Fap7 inhibits premature interactions of Rps14 with RNA. The Fap7/Rps14 interaction is modulated by nucleotide binding to Fap7. Rps14 strongly activates the ATPase activity but not the adenylate kinase activity of Fap7, identifying Rps14 as an example of a ribosomal protein functioning as an ATPase-activating factor. In addition, Fap7 inhibits the RNA cleavage activity of Nob1, the endonuclease responsible for the final maturation step of the small subunit rRNA, in a nucleotide independent manner. Thus, Fap7 may regulate small subunit biogenesis at multiple stages.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenilato Quinase/metabolismo , Modelos Moleculares , Conformação Proteica , Pyrococcus horikoshii/enzimologia , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/fisiologia , Sequência de Aminoácidos , Biofísica , Cromatografia em Gel , Cromatografia em Camada Fina , Dicroísmo Circular , Polarização de Fluorescência , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie , Espectrometria de Fluorescência , Técnicas do Sistema de Duplo-Híbrido
8.
Nucleic Acids Res ; 41(19): 9062-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913415

RESUMO

Yeast 25S rRNA was reported to contain a single cytosine methylation (m(5)C). In the present study using a combination of RP-HPLC, mung bean nuclease assay and rRNA mutagenesis, we discovered that instead of one, yeast contains two m(5)C residues at position 2278 and 2870. Furthermore, we identified and characterized two putative methyltransferases, Rcm1 and Nop2 to be responsible for these two cytosine methylations, respectively. Both proteins are highly conserved, which correlates with the presence of two m(5)C residues at identical positions in higher eukaryotes, including humans. The human homolog of yeast Nop2, p120 has been discovered to be upregulated in various cancer tissues, whereas the human homolog of Rcm1, NSUN5 is completely deleted in the William's-Beuren Syndrome. The substrates and function of both human homologs remained unknown. In the present study, we also provide insights into the significance of these two m(5)C residues. The loss of m(5)C2278 results in anisomycin hypersensitivity, whereas the loss of m(5)C2870 affects ribosome synthesis and processing. Establishing the locations and enzymes in yeast will not only help identifying the function of their homologs in higher organisms, but will also enable understanding the role of these modifications in ribosome function and architecture.


Assuntos
Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , 5-Metilcitosina , Alelos , Sequência de Bases , Cisteína/química , Deleção de Genes , Metilação , Metiltransferases/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fenótipo , RNA Ribossômico/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , tRNA Metiltransferases/fisiologia
9.
Nucleic Acids Res ; 41(10): 5428-43, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23558746

RESUMO

The 25S rRNA of yeast contains several base modifications in the functionally important regions. The enzymes responsible for most of these base modifications remained unknown. Recently, we identified Rrp8 as a methyltransferase involved in m(1)A645 modification of 25S rRNA. Here, we discovered a previously uncharacterized gene YBR141C to be responsible for second m(1)A2142 modification of helix 65 of 25S rRNA. The gene was identified by reversed phase-HPLC screening of all deletion mutants of putative RNA methyltransferase and was confirmed by gene complementation and phenotypic characterization. Because of the function of its encoded protein, YBR141C was named BMT2 (base methyltransferase of 25S RNA). Helix 65 belongs to domain IV, which accounts for most of the intersubunit surface of the large subunit. The 3D structure prediction of Bmt2 supported it to be an Ado Met methyltransferase belonging to Rossmann fold superfamily. In addition, we demonstrated that the substitution of G180R in the S-adenosyl-L-methionine-binding motif drastically reduces the catalytic function of the protein in vivo. Furthermore, we analysed the significance of m(1)A2142 modification in ribosome synthesis and translation. Intriguingly, the loss of m(1)A2142 modification confers anisomycin and peroxide sensitivity to the cells. Our results underline the importance of RNA modifications in cellular physiology.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina/metabolismo , Antibacterianos/farmacologia , Peróxido de Hidrogênio/toxicidade , Metiltransferases/química , Metiltransferases/genética , Mutação , Biossíntese de Proteínas , RNA Ribossômico/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Nucleic Acids Res ; 41(2): 1151-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180764

RESUMO

Ribosomal RNA undergoes various modifications to optimize ribosomal structure and expand the topological potential of RNA. The most common nucleotide modifications in ribosomal RNA (rRNA) are pseudouridylations and 2'-O methylations (Nm), performed by H/ACA box snoRNAs and C/D box snoRNAs, respectively. Furthermore, rRNAs of both ribosomal subunits also contain various base modifications, which are catalysed by specific enzymes. These modifications cluster in highly conserved areas of the ribosome. Although most enzymes catalysing 18S rRNA base modifications have been identified, little is known about the 25S rRNA base modifications. The m(1)A modification at position 645 in Helix 25.1 is highly conserved in eukaryotes. Helix formation in this region of the 25S rRNA might be a prerequisite for a correct topological framework for 5.8S rRNA to interact with 25S rRNA. Surprisingly, we have identified ribosomal RNA processing protein 8 (Rrp8), a nucleolar Rossman-fold like methyltransferase, to carry out the m(1)A base modification at position 645, although Rrp8 was previously shown to be involved in A2 cleavage and 40S biogenesis. In addition, we were able to identify specific point mutations in Rrp8, which show that a reduced S-adenosyl-methionine binding influences the quality of the 60S subunit. This highlights the dual functionality of Rrp8 in the biogenesis of both subunits.


Assuntos
Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Metilação , Metiltransferases/genética , Mutação , Proteínas Nucleares/genética , Proteína O-Metiltransferase , RNA Ribossômico/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
11.
Nucleic Acids Res ; 39(4): 1526-37, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20972225

RESUMO

The Nep1 (Emg1) SPOUT-class methyltransferase is an essential ribosome assembly factor and the human Bowen-Conradi syndrome (BCS) is caused by a specific Nep1(D86G) mutation. We recently showed in vitro that Methanocaldococcus jannaschii Nep1 is a sequence-specific pseudouridine-N1-methyltransferase. Here, we show that in yeast the in vivo target site for Nep1-catalyzed methylation is located within loop 35 of the 18S rRNA that contains the unique hypermodification of U1191 to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouri-dine (m1acp3Ψ). Specific (14)C-methionine labelling of 18S rRNA in yeast mutants showed that Nep1 is not required for acp-modification but suggested a function in Ψ1191 methylation. ESI MS analysis of acp-modified Ψ-nucleosides in a Δnep1-mutant showed that Nep1 catalyzes the Ψ1191 methylation in vivo. Remarkably, the restored growth of a nep1-1(ts) mutant upon addition of S-adenosylmethionine was even observed after preventing U1191 methylation in a Δsnr35 mutant. This strongly suggests a dual Nep1 function, as Ψ1191-methyltransferase and ribosome assembly factor. Interestingly, the Nep1 methyltransferase activity is not affected upon introduction of the BCS mutation. Instead, the mutated protein shows enhanced dimerization propensity and increased affinity for its RNA-target in vitro. Furthermore, the BCS mutation prevents nucleolar accumulation of Nep1, which could be the reason for reduced growth in yeast and the Bowen-Conradi syndrome.


Assuntos
Metiltransferases/metabolismo , Proteínas Nucleares/genética , Pseudouridina/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Nucléolo Celular/enzimologia , Dimerização , Retardo do Crescimento Fetal/genética , Humanos , Methanococcales/enzimologia , Metilação , Metiltransferases/genética , Dados de Sequência Molecular , Mutação Puntual , Transtornos Psicomotores/genética , RNA Ribossômico 18S/química , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Biomol NMR Assign ; 3(2): 251-4, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19779849

RESUMO

Nep1 from Methanocaldococcus jannaschii is a 48 kDa dimeric protein belonging to the SPOUT-class of S-adenosylmethionine dependent RNA-methyltransferases and acting as a ribosome assembly factor. Mutations in the human homolog are the cause of Bowen-Conradi syndrome. We report here 1H, 15N and 13C chemical shift assignments for the backbone of the protein in its apo state.


Assuntos
Methanococcales/enzimologia , Metiltransferases/química , Metiltransferases/metabolismo , Multimerização Proteica , RNA Ribossômico 18S/metabolismo , Modelos Moleculares , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína
13.
FEMS Yeast Res ; 9(5): 789-92, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19519766

RESUMO

Saccharomyces cerevisiae strains belonging to the CEN.PK family are widely used in fundamental and applied yeast research. These strains have been reported to be hypersensitive to sodium ions and a previous microarray-based genotyping study indicated an atypical organization of the PMR2 locus. In other S. cerevisiae strains, this locus harbours one to five ENA genes that encode plasma membrane sodium-pumping ATPases. Sequence analysis of the PMR2 locus in S. cerevisiae CEN.PK113-7D revealed the presence of a new ENA gene that showed substantial sequence differences, both at the nucleotide level and at the predicted amino acid sequence level, with previously described ENA genes. The presence of this single and atypical ENA gene correlated with hypersensitivity to sodium and, in particular, to lithium ions. The native ENA6 gene was transcriptionally induced by sodium and lithium ions, but, apparently, the capacity for sodium export upon full induction was insufficient to achieve the levels of sodium and lithium ion tolerance observed in other S. cerevisiae strains. The sodium and lithium hypersensitivity of CEN.PK strains, which is potentially detrimental during cultivation in sodium-rich media, could, however, be suppressed by overexpression of ENA6.


Assuntos
Cátions/farmacologia , Lítio/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética , Sódio/farmacologia , Antifúngicos , DNA Fúngico/genética , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
Nucleic Acids Res ; 36(5): 1542-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18208838

RESUMO

Ribosome biogenesis in eukaryotes requires the participation of a large number of ribosome assembly factors. The highly conserved eukaryotic nucleolar protein Nep1 has an essential but unknown function in 18S rRNA processing and ribosome biogenesis. In Saccharomyces cerevisiae the malfunction of a temperature-sensitive Nep1 protein (nep1-1(ts)) was suppressed by the addition of S-adenosylmethionine (SAM). This suggests the participation of Nep1 in a methyltransferase reaction during ribosome biogenesis. In addition, yeast Nep1 binds to a 6-nt RNA-binding motif also found in 18S rRNA and facilitates the incorporation of ribosomal protein Rps19 during the formation of pre-ribosomes. Here, we present the X-ray structure of the Nep1 homolog from the archaebacterium Methanocaldococcus jannaschii in its free form (2.2 A resolution) and bound to the S-adenosylmethionine analog S-adenosylhomocysteine (SAH, 2.15 A resolution) and the antibiotic and general methyltransferase inhibitor sinefungin (2.25 A resolution). The structure reveals a fold which is very similar to the conserved core fold of the SPOUT-class methyltransferases but contains a novel extension of this common core fold. SAH and sinefungin bind to Nep1 at a preformed binding site that is topologically equivalent to the cofactor-binding site in other SPOUT-class methyltransferases. Therefore, our structures together with previous genetic data suggest that Nep1 is a genuine rRNA methyltransferase.


Assuntos
Proteínas Arqueais/química , Methanococcales/enzimologia , Metiltransferases/química , Modelos Moleculares , S-Adenosilmetionina/química , Sequência de Aminoácidos , Proteínas Arqueais/classificação , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Metiltransferases/classificação , Metiltransferases/metabolismo , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , RNA/química , RNA Ribossômico 18S/metabolismo
15.
Curr Genet ; 40(5): 326-38, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11935223

RESUMO

The essential Saccharomyces cerevisiae gene YLR186w [ NEP1 (nucleolar essential protein 1), also recently named EMG1 (essential for mitotic growth 1)] is highly conserved in eukaryotes and archaea. In S. cerevisiae, Nep1p is localized in the nucleus with a rod-shaped morphology, which first suggested a spindle/microtubule association for ScNEP1 (S. cerevisiae NEP1). However, in Candida albicans and in HeLa cells, Nep1p is a protein of the nucleoli. CaNEP1 (C. albicans NEP1) and HsNEP1 (Homo sapiens NEP1) heterologously complement the essential phenotype in a S. cerevisiae nep1 deletion mutant. However, the ScNEP1 spindle/microtubule phenotype is not found with HsNEP1 and CaNEP1, which shows that the spindle/microtubule association is specific for ScNep1p and that it is not the primary essential function of Nep1p. A temperature-sensitive ScNEP1 (ts1) allele was isolated and revealed a strongly increased sensitivity to paromomycin, a translational inhibitor which binds to RNA, indicating that ribosome biogenesis within the nucleolus is probably affected. This was confirmed by polysome profile and ribosomal subunit analysis, showing a ribosomal subunit imbalance with a decrease in 40S subunits, due to reduced amounts of native 18S rRNA. Furthermore, ScSAM2, encoding S-adenosylmethionine synthetase, was isolated as a multicopy-suppressor of the ScNEP1 (ts1) mutant allele and medium supplementation with S-adenosylmethionine restored its growth. For the first time, these results identified a novel protein with an essential function in ribosomal biogenesis which directly or indirectly interferes with a methylation reaction during the early steps of pre-rRNA processing necessary for the generation of 40S ribosomal subunits.


Assuntos
Proteínas Ribossômicas/genética , Ribossomos/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Archaea , Sequência de Bases , Sequência Conservada , Células Eucarióticas , Células HeLa , Humanos , Metilação , Dados de Sequência Molecular , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA