Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(18): 15769-15778, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571788

RESUMO

Semaphorin 6D (SEMA6D), a member of the class 6 semaphorin family, is a membrane-associated protein that plays a key role in the development of cardiac and neural tissues. A growing body of evidence suggests that SEMA6D is also involved in tumorigenesis. In breast cancer, high SEMA6D levels are correlated with better survival rates. However, very little is known about the functional significance of SEMA6D in breast tumorigenesis. In the present study, we aimed to investigate the effects of SEMA6D expression on the normal breast cell line MCF10A and the breast cancer cell lines MCF7 and MDA MB 231. We demonstrated that SEMA6D expression increases the proliferation of MCF10A cells, whereas the opposite effect was observed in MCF7 cells. SEMA6D expression induced anchorage-independent growth in both cancer cell lines. Furthermore, migration of MCF10A and MCF7 cells and invasion of MDA MB 231 cells were elevated in response to SEMA6D overexpression. Accordingly, the genes related to epithelial-mesenchymal transition (EMT) were altered by SEMA6D expression in MCF10A and MCF7 cell lines. Finally, we provided evidence that SEMA6D levels were associated with the expression of the cell cycle, EMT, and Notch signaling pathway-related genes in breast cancer patients' data. We showed for the first time that SEMA6D overexpression has cell-specific effects on the proliferation, migration, and invasion of normal and cancer breast cell lines, which agrees with the gene expression data of clinical samples. This study lays the groundwork for future research into understanding the functional importance of SEMA6D in breast cancer.

2.
Eur J Cell Biol ; 99(2-3): 151070, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32005345

RESUMO

Metastasis is the main cause of cancer related deaths, and unfolding the molecular mechanisms underlying metastatic progression is critical for the development of novel therapeutic approaches. Notch is one of the key signaling pathways involved in breast tumorigenesis and metastasis. Notch activation induces pro-metastatic processes such as migration, invasion and epithelial to mesenchymal transition (EMT). However, molecular mediators working downstream of Notch in these processes are not fully elucidated. CYR61 is a secreted protein implicated in metastasis, and its inhibition by a monoclonal antibody suppresses metastasis in xenograft breast tumors, indicating the clinical importance of CYR61 targeting. Here, we aimed to investigate whether CYR61 works downstream of Notch in inducing pro-metastatic phenotypes in breast cells. We showed that CYR61 expression is positively regulated by Notch activity in breast cells. Notch1-induced migration, invasion and anchorage independent growth of a normal breast cell line, MCF10A, were abrogated by CYR61 silencing. Furthermore, upregulation of core EMT markers upon Notch1-activation was impaired in the absence of CYR61. However, reduced migration and invasion of highly metastatic cell line, MDA MB 231, cells upon Notch inhibition was not dependent on CYR61 downregulation. In conclusion, we showed that in normal breast cell line MCF10A, CYR61 is a mediator of Notch1-induced pro-metastatic phenotypes partly via induction of EMT. Our results imply CYR61 as a prominent therapeutic candidate for a subpopulation of breast tumors with high Notch activity.


Assuntos
Neoplasias da Mama/genética , Proteína Rica em Cisteína 61/genética , Receptor Notch1/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Transdução de Sinais
3.
Turk J Biol ; 43(1): 70-76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930637

RESUMO

Metastasis is the main reason for death in breast cancer. Understanding the molecular players in metastasis is crucial for diagnostic and therapeutic purposes. Notch signalling plays an oncogenic role in breast tumorigenesis and is involved in metastasis. Downstream mediators of Notch signalling in prometastatic processes are not yet fully discovered. Here we aimed to investigate whether Notch signalling regulates the expression of SEMA3C, HMGA2, CXCL14, CXCR7, and CCL20, which are involved in prometastatic processes, in breast cell lines. To this end, expression of the selected genes was analysed following Notch activation by overexpression of the Notch1 intracellular domain in the normal breast epithelial cell line MCF10A, and inhibition by silencing of the Notch transcriptional mediator RBPjκ in the breast cancer cell line MDA MB 231. SEMA3C and HMGA2 mRNA were decreased, while CXCL14 and CXCR7 mRNA were increased significantly in response to Notch activation in MCF10A cells. Notch inhibition in MDA MB 231 cells significantly decreased HMGA2 and CCL20 mRNA. Protein levels were not significantly altered by Notch modulation. In conclusion, we showed that Notch signalling regulates expression of SEMA3C, CXCL14, CCL20, CXCR7, and HMGA2, which are prominent candidate genes that might function downstream of Notch to induce prometastatic processes.

4.
Am J Hum Genet ; 102(4): 557-573, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576218

RESUMO

Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.


Assuntos
Domínio Catalítico/genética , Metaloendopeptidases/genética , Mutação/genética , Degeneração Neural/genética , Criança , Pré-Escolar , Derme/patologia , Transporte de Elétrons , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Ferro-Enxofre/genética , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Linhagem , Proto-Oncogene Mas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Peptidase de Processamento Mitocondrial
5.
Mol Biol Cell ; 28(8): 997-1002, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28228553

RESUMO

Approximately 70% of mitochondrial precursor proteins are imported from the cytosol via N-terminal presequences, which are cleaved upon exposure to the mitochondrial processing protease MPP in the matrix. Cleaved presequence peptides then need to be efficiently degraded, and impairment of this clearance step, for example, by amyloid ß peptides, causes feedback inhibition of MPP, leading ultimately to accumulation of immature precursor proteins within mitochondria. Degradation of mitochondrial peptides is performed by Cym1 in yeast and its homologue, PreP, in humans. Here we identify the novel mitochondrial matrix protease Ste23 in yeast, a homologue of human insulin-degrading enzyme, which is required for efficient peptide degradation. Ste23 and Cym1 tightly cooperate to ensure the correct functioning of the essential presequence processing machinery.


Assuntos
Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Produtos Finais de Degradação Proteica/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Humanos , Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , Proteólise , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Peptidase de Processamento Mitocondrial
6.
PLoS One ; 10(7): e0132757, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161746

RESUMO

IRF6, a member of Interferon Regulatory Factors (IRF) family, is involved in orofacial and epidermal development. In breast cancer cell lines ectopic expression of IRF6 reduces cell numbers suggesting a role as negative regulator of cell cycle. IRF6 is a direct target of canonical Notch signaling in keratinocyte differentiation. Notch is involved in luminal cell fate determination and stem cell regulation in the normal breast and is implicated as an oncogene in breast cancer. Notch activation is sufficient to induce proliferation and transformation in non-tumorigenic breast epithelial cell line, MCF10A. ΔNp63, which is downregulated by Notch activation in the breast, regulates IRF6 expression in keratinocytes. In this report, we investigate Notch-IRF6 and ΔNp63-IRF6 interactions in MCF10A and MDA MB 231 cells. We observed that in these cells, IRF6 expression is partially regulated by canonical Notch signaling and ΔNp63 downregulation. Furthermore, we demonstrate that IRF6 abrogation impairs Notch-induced proliferation and transformation in MCF10A cells. Thus, we confirm the previous findings by showing a tissue independent regulation of IRF6 by Notch signaling, and extend them by proposing a context dependent role for IRF6, which acts as a positive regulator of proliferation and transformation in MCF10A cells downstream of Notch signaling.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Fatores Reguladores de Interferon/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Fatores Reguladores de Interferon/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA