Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(1): 102123, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38333672

RESUMO

Gene variants in LZTR1 are implicated to cause Noonan syndrome associated with a severe and early-onset hypertrophic cardiomyopathy. Mechanistically, LZTR1 deficiency results in accumulation of RAS GTPases and, as a consequence, in RAS-MAPK signaling hyperactivity, thereby causing the Noonan syndrome-associated phenotype. Despite its epidemiological relevance, pharmacological as well as invasive therapies remain limited. Here, personalized CRISPR-Cas9 gene therapies might offer a novel alternative for a curative treatment in this patient cohort. In this study, by utilizing a patient-specific screening platform based on iPSC-derived cardiomyocytes from two Noonan syndrome patients, we evaluated different clinically translatable therapeutic approaches using small Cas9 orthologs targeting a deep-intronic LZTR1 variant to cure the disease-associated molecular pathology. Despite high editing efficiencies in cardiomyocyte cultures transduced with lentivirus or all-in-one adeno-associated viruses, we observed crucial differences in editing outcomes in proliferative iPSCs vs. non-proliferative cardiomyocytes. While editing in iPSCs rescued the phenotype, the same editing approaches did not robustly restore LZTR1 function in cardiomyocytes, indicating critical differences in the activity of DNA double-strand break repair mechanisms between proliferative and non-proliferative cell types and highlighting the importance of cell type-specific screens for testing CRISPR-Cas9 gene therapies.

2.
Neuropathol Appl Neurobiol ; 49(5): e12935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37705188

RESUMO

AIMS: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.


Assuntos
Transtorno Depressivo Maior , Esclerose Múltipla , Animais , Ratos , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos
3.
Cells ; 10(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673402

RESUMO

Genetic modification of non-human primates (NHP) paves the way for realistic disease models. The common marmoset is a NHP species increasingly used in biomedical research. Despite the invention of RNA-guided nucleases, one strategy for protein overexpression in NHP is still lentiviral transduction. We generated three male and one female enhanced green fluorescent protein (EGFP)-transgenic founder marmosets via lentiviral transduction of natural preimplantation embryos. All founders accomplished germline transmission of the transgene by natural mating, yielding 20 transgenic offspring together (in total, 45 pups; 44% transgenic). This demonstrates that the transgenic gametes are capable of natural fertilization even when in competition with wildtype gametes. Importantly, 90% of the transgenic offspring showed transgene silencing, which is in sharp contrast to rodents, where the identical transgene facilitated robust EGFP expression. Furthermore, we consistently discovered somatic, but so far, no germ cell chimerism in mixed wildtype/transgenic litters. Somatic cell chimerism resulted in false-positive genotyping of the respective wildtype littermates. For the discrimination of transgenic from transgene-chimeric animals by polymerase chain reaction on skin samples, a chimeric cell depletion protocol was established. In summary, it is possible to establish a cohort of genetically modified marmosets by natural mating, but specific requirements including careful promoter selection are essential.


Assuntos
Quimerismo/embriologia , Proteínas de Fluorescência Verde/metabolismo , Animais , Animais Geneticamente Modificados , Callithrix , Feminino , Masculino
4.
Sci Rep ; 11(1): 4083, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602969

RESUMO

Exosomal transfers represent an important mode of intercellular communication. Syntenin is a small scaffold protein that, when binding ALIX, can direct endocytosed syndecans and syndecan cargo to budding endosomal membranes, supporting the formation of intraluminal vesicles that compose the source of a major class of exosomes. Syntenin, however, can also support the recycling of these same components to the cell surface. Here, by studying mice and cells with syntenin-knock out, we identify syntenin as part of dedicated machinery that integrates both the production and the uptake of secreted vesicles, supporting viral/exosomal exchanges. This study significantly extends the emerging role of heparan sulfate proteoglycans and syntenin as key components for macromolecular cargo internalization into cells.


Assuntos
Exossomos/metabolismo , Sinteninas/fisiologia , Animais , Exossomos/virologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes/métodos , Humanos , Células MCF-7 , Camundongos , Sinteninas/metabolismo , Transdução Genética
5.
Sci Rep ; 11(1): 1934, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479314

RESUMO

Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood-brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&2, while providing neuronal GFP expression in the striatum and hippocampus.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dependovirus/genética , Fígado/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Terapia Genética , Vetores Genéticos/uso terapêutico , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/farmacologia , Humanos , Injeções Intravenosas , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Neurônios/efeitos dos fármacos , Regiões Promotoras Genéticas , Sinapsinas/química , Sinapsinas/farmacologia , Distribuição Tecidual , Transdução Genética , Ultrassonografia
6.
Theranostics ; 9(26): 8127-8137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754385

RESUMO

Gene therapy can be designed to efficiently counter pathological features characteristic of neurodegenerative disorders. Here, we took advantage of the glial fibrillary acidic protein (GFAP) promoter to preferentially enhance transgene expression near plaques composed of amyloid-beta peptides (Aß), a hallmark of Alzheimer's disease (AD), in the TgCRND8 mouse model of amyloidosis. Methods: The delivery of intravenously injected recombinant adeno-associated virus mosaic serotype 1/2 (rAAV1/2) to the cortex and hippocampus of TgCRND8 mice was facilitated using transcranial MRI-guided focused ultrasound in combination with microbubbles (MRIgFUS), which transiently and locally increases the permeability of the blood-brain barrier (BBB). rAAV1/2 expression of the reporter green fluorescent protein (GFP) under a GFAP promoter was compared to GFP expression driven by the constitutive human beta actin (HBA) promoter. Results: MRIgFUS targeting the cortex and hippocampus facilitated the entry of rAAV1/2 and GFP expression under the GFAP promoter was localized to GFAP-positive astrocytes. Adjacent to Aß plaques where GFAP is upregulated, the volume, surface area, and fluorescence intensity of the transgene GFP were greater in rAAV1/2-GFAP-GFP compared to rAAV1/2-HBA-GFP treated animals. In peripheral organs, GFP expression was particularly strong in the liver, irrespective of the promoter. Conclusion: The GFAP promoter enhanced transgene expression in proximity of Aß plaques in the brain of TgCRND8 mice, and it also resulted in significant expression in the liver. Future gene therapies for neurological disorders could benefit from using a GFAP promoter to regulate transgene expression in response to disease-induced astrocytic reactivity.


Assuntos
Técnicas de Transferência de Genes , Proteína Glial Fibrilar Ácida , Placa Amiloide/patologia , Regiões Promotoras Genéticas , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Transgenes
7.
Cell Death Dis ; 10(12): 898, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776327

RESUMO

A major hallmark of Parkinson's disease is loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The pathophysiological mechanisms causing this relatively selective neurodegeneration are poorly understood, and thus experimental systems allowing to study dopaminergic neuron dysfunction are needed. Induced pluripotent stem cells (iPSCs) differentiated toward a dopaminergic neuronal phenotype offer a valuable source to generate human dopaminergic neurons. However, currently available protocols result in a highly variable yield of dopaminergic neurons depending on the source of hiPSCs. We have now developed a protocol based on HBA promoter-driven transient expression of transcription factors by means of adeno-associated viral (AAV) vectors, that allowed to generate very consistent numbers of dopaminergic neurons from four different human iPSC lines. We also demonstrate that AAV vectors expressing reporter genes from a neuron-specific hSyn1 promoter can serve as surrogate markers for maturation of hiPSC-derived dopaminergic neurons. Dopaminergic neurons differentiated by transcription factor expression showed aggravated neurodegeneration through α-synuclein overexpression, but were not sensitive to γ-synuclein overexpression, suggesting that these neurons are well suited to study neurodegeneration in the context of Parkinson's disease.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Dependovirus/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/toxicidade
8.
Methods Mol Biol ; 1950: 177-197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783974

RESUMO

Recombinant adeno-associated viral (rAAV) vectors are a promising tool for therapeutic gene delivery to the brain. However, the delivery of rAAVs across the blood-brain barrier (BBB) and entry into the brain remains a major challenge for rAAV-based gene therapy. To circumvent this limitation, transcranial MRI-guided focused ultrasound (MRIgFUS) combined with intravenously injected microbubbles has been used to transiently and reversibly increase BBB permeability in targeted brain regions. Systemic administration of rAAVs at the time of sonication with focused ultrasound (FUS) facilitates the passage of rAAVs through the BBB and into the brain parenchyma. We and others have demonstrated that FUS-mediated rAAV delivery to the brain results in efficient transduction and transgene expression in vivo. Using this approach, the dose of intravenously injected rAAV variants that can cross the BBB can be reduced by 100 times, achieving significant transgene expression in the brain parenchyma with reduced peripheral transduction. Moreover, this strategy can be used to deliver rAAV variants that do not cross the BBB from the blood to selected brain regions. Here, we provide a detailed protocol for FUS-induced BBB permeability for targeted rAAV delivery to the brain of adult mice and rats.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Imageamento por Ressonância Magnética , Neuronavegação , Ultrassonografia , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos da radiação , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Neuronavegação/métodos , Permeabilidade/efeitos da radiação , Ratos , Transgenes , Ultrassonografia/métodos
9.
EMBO Mol Med ; 11(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509897

RESUMO

Normal hearing and synaptic transmission at afferent auditory inner hair cell (IHC) synapses require otoferlin. Deafness DFNB9, caused by mutations in the OTOF gene encoding otoferlin, might be treated by transferring wild-type otoferlin cDNA into IHCs, which is difficult due to the large size of this transgene. In this study, we generated two adeno-associated viruses (AAVs), each containing half of the otoferlin cDNA Co-injecting these dual-AAV2/6 half-vectors into the cochleae of 6- to 7-day-old otoferlin knock-out (Otof-/-) mice led to the expression of full-length otoferlin in up to 50% of IHCs. In the cochlea, otoferlin was selectively expressed in auditory hair cells. Dual-AAV transduction of Otof-/- IHCs fully restored fast exocytosis, while otoferlin-dependent vesicle replenishment reached 35-50% of wild-type levels. The loss of 40% of synaptic ribbons in these IHCs could not be prevented, indicating a role of otoferlin in early synapse maturation. Acoustic clicks evoked auditory brainstem responses with thresholds of 40-60 dB. Therefore, we propose that gene delivery mediated by dual-AAV vectors might be suitable to treat deafness forms caused by mutations in large genes such as OTOF.


Assuntos
Surdez/patologia , Surdez/terapia , Exocitose , Terapia Genética/métodos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Proteínas de Membrana/deficiência , Animais , Dependovirus/genética , Vetores Genéticos , Camundongos Knockout , Transdução Genética , Resultado do Tratamento
10.
Redox Biol ; 14: 522-534, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29121589

RESUMO

Tauopathies are a group of neurodegenerative disorders where TAU protein is presented as aggregates or is abnormally phosphorylated, leading to alterations of axonal transport, neuronal death and neuroinflammation. Currently, there is no treatment to slow progression of these diseases. Here, we have investigated whether dimethyl fumarate (DMF), an inducer of the transcription factor NRF2, could mitigate tauopathy in a mouse model. The signaling pathways modulated by DMF were also studied in mouse embryonic fibroblast (MEFs) from wild type or KEAP1-deficient mice. The effect of DMF on neurodegeneration, astrocyte and microglial activation was examined in Nrf2+/+ and Nrf2-/- mice stereotaxically injected in the right hippocampus with an adeno-associated vector expressing human TAUP301L and treated daily with DMF (100mg/kg, i.g) during three weeks. DMF induces the NRF2 transcriptional through a mechanism that involves KEAP1 but also PI3K/AKT/GSK-3-dependent pathways. DMF modulates GSK-3ß activity in mouse hippocampi. Furthermore, DMF modulates TAU phosphorylation, neuronal impairment measured by calbindin-D28K and BDNF expression, and inflammatory processes involved in astrogliosis, microgliosis and pro-inflammatory cytokines production. This study reveals neuroprotective effects of DMF beyond disruption of the KEAP1/NRF2 axis by inhibiting GSK3 in a mouse model of tauopathy. Our results support repurposing of this drug for treatment of these diseases.


Assuntos
Fumarato de Dimetilo/uso terapêutico , Quinase 3 da Glicogênio Sintase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Tauopatias/tratamento farmacológico , Animais , Fumarato de Dimetilo/farmacologia , Modelos Animais de Doenças , Camundongos , Terapia de Alvo Molecular , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tauopatias/metabolismo
11.
Mol Ther Nucleic Acids ; 8: 13-25, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918015

RESUMO

Experimentally restricting transgene expression exclusively to astrocytes has proven difficult. Using adeno-associated-virus-mediated gene transfer, we assessed two commonly used glial fibrillary acidic protein promoters: the full-length version gfa2 (2,210-bp human glial fibrillary acidic protein [GFAP] promoter) and the truncated variant gfaABC1D (681-bp GFAP promoter). The capacity to drive efficient, but also cell-type specific, expression of the EGFP in astrocytes was tested both in vitro in rat primary cortical cultures as well as in vivo in the rat striatum. We observed an efficient, but not entirely astrocyte-specific, gfa2-driven reporter expression. gfaABC1D exhibited a weaker activity, and most importantly, off-target, neuronal expression of the transgene occurred in a larger fraction of cells. Therefore, we explored the potential of a microRNA (miR)-specific target-sequence-based approach for abolishing off-target expression. When miR124 target sequences were incorporated into the 3' UTR, neuronal gene expression was effectively silenced. However, unexpectedly, the insertion of an additional sequence in the 3' UTR clearly diminished transgene expression. In conclusion, the gfaABC1D promoter on its own is not sufficient to specifically target transgene expression to astrocytes and is not well suited for AAV-based gene targeting, even if short promoter sequences are required. The combination with a miR de-targeting sequence represents a promising experimental strategy that eliminates off-target, neuronal expression.

12.
Front Mol Neurosci ; 10: 142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588449

RESUMO

Gene editing tools like TALENs, ZFNs and Crispr/Cas now offer unprecedented opportunities for targeted genetic manipulations in virtually all species. Most of the recent research in this area has concentrated on manipulation of the genome in isolated cells, which then give rise to transgenic animals or modified stem cell lines. Much less is known about applicability of genetic scissors in terminally differentiated, non-dividing cells like neurons of the adult brain. We addressed this question by expression of a pair of ZFNs targeting the murine cathepsin D gene in CNS neurons by means of an optimized AAV viral vector. We show that ZFN expression resulted in substantial depletion of cathepsin D from neuronal lysosomes, demonstrating a robust gene deletion. Importantly, long-term ZFN expression in CNS neurons did not impair essential neuronal functionality and did not cause inflammation or neurodegeneration, suggesting that potent genetic scissors can be expressed safely in the mouse brain. This finding opens up new venues to create novel research models for neurodegenerative disorders.

13.
Cell Death Dis ; 7(9): e2359, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27607574

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF's neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF's effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas c-ret/genética , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Injeções Intraventriculares , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Knockout , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Proto-Oncogênicas c-ret/deficiência , Transdução de Sinais , Técnicas Estereotáxicas , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia
14.
Antioxid Redox Signal ; 25(2): 61-77, 2016 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-27009601

RESUMO

AIMS: This preclinical study was aimed at determining whether pharmacological targeting of transcription factor NRF2, a master controller of many homeostatic genes, might provide a disease-modifying therapy in the animal model of Parkinson's disease (PD) that best reproduces the main hallmark of this pathology, that is, α-synucleinopathy, and associated events, including nigral dopaminergic cell death, oxidative stress, and neuroinflammation. RESULTS: Pharmacological activation of NRF2 was achieved at the basal ganglia by repurposing dimethyl fumarate (DMF), a drug already in use for the treatment of multiple sclerosis. Daily oral gavage of DMF protected nigral dopaminergic neurons against α-SYN toxicity and decreased astrocytosis and microgliosis after 1, 3, and 8 weeks from stereotaxic delivery to the ventral midbrain of recombinant adeno-associated viral vector expressing human α-synuclein. This protective effect was not observed in Nrf2-knockout mice. In vitro studies indicated that this neuroprotective effect was correlated with altered regulation of autophagy markers SQTSM1/p62 and LC3 in MN9D, BV2, and IMA 2.1 and with a shift in microglial dynamics toward a less pro-inflammatory and a more wound-healing phenotype. In postmortem samples of PD patients, the cytoprotective proteins associated with NRF2 expression, NQO1 and p62, were partly sequestered in Lewy bodies, suggesting impaired neuroprotective capacity of the NRF2 signature. INNOVATION: These experiments provide a compelling rationale for targeting NRF2 with DMF as a therapeutic strategy to reinforce endogenous brain defense mechanisms against PD-associated synucleinopathy. CONCLUSION: DMF is ready for clinical validation in PD. Antioxid. Redox Signal. 25, 61-77.


Assuntos
Fumarato de Dimetilo/farmacologia , Reposicionamento de Medicamentos , Fator 2 Relacionado a NF-E2/agonistas , Doença de Parkinson/metabolismo , Sinucleínas/metabolismo , Animais , Autofagia , Encéfalo/metabolismo , Fumarato de Dimetilo/administração & dosagem , Modelos Animais de Doenças , Expressão Gênica , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinucleínas/genética
15.
Cereb Cortex ; 26(2): 820-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26564256

RESUMO

Neuronal wiring is key to proper neural information processing. Tactile information from the rodent's whiskers reaches the cortex via distinct anatomical pathways. The lemniscal pathway relays whisking and touch information from the ventral posteromedial thalamic nucleus to layer IV of the primary somatosensory "barrel" cortex. The disorganized neocortex of the reeler mouse is a model system that should severely compromise the ingrowth of thalamocortical axons (TCAs) into the cortex. Moreover, it could disrupt intracortical wiring. We found that neuronal intermingling within the reeler barrel cortex substantially exceeded previous descriptions, leading to the loss of layers. However, viral tracing revealed that TCAs still specifically targeted transgenically labeled spiny layer IV neurons. Slice electrophysiology and optogenetics proved that these connections represent functional synapses. In addition, we assessed intracortical activation via immediate-early-gene expression resulting from a behavioral exploration task. The cellular composition of activated neuronal ensembles suggests extensive similarities in intracolumnar information processing in the wild-type and reeler brains. We conclude that extensive ectopic positioning of neuronal partners can be compensated for by cell-autonomous mechanisms that allow for the establishment of proper connectivity. Thus, genetic neuronal fate seems to be of greater importance for correct cortical wiring than radial neuronal position.


Assuntos
Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Vibrissas/fisiologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica/genética , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/classificação , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteína Reelina , Córtex Somatossensorial/metabolismo
16.
Methods Mol Biol ; 1382: 81-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26611580

RESUMO

This chapter outlines some general principles of transcriptional targeting approaches using viral vectors in the central nervous system. Transcriptional targeting is first discussed in the context of vector tropism and appropriate delivery. Then, some of our own attempts to restrict expression of therapeutic factors to distinct brain cell populations are discussed, followed by a detailed description of the setscrews that are available for these experiments. A critical discussion of current stumbling blocks and necessary developments to achieve clinical applicability of advanced targeted vector systems is provided.


Assuntos
Sistema Nervoso Central/metabolismo , Dependovirus/genética , Regiões Promotoras Genéticas , Animais , Expressão Gênica , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Especificidade de Órgãos , Transcrição Gênica
17.
Nat Neurosci ; 18(11): 1584-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436904

RESUMO

Accumulation of pathological tau protein is a major hallmark of Alzheimer's disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus-based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target.


Assuntos
Exossomos/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Córtex Entorrinal/patologia , Hipocampo/patologia , Masculino , Camundongos Transgênicos
18.
Hum Mol Genet ; 24(19): 5451-63, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26220979

RESUMO

Machado-Joseph disease (MJD) is a fatal, dominantly inherited neurodegenerative disorder associated with an expanded polyglutamine tract within the ataxin-3 protein, and characterized by progressive impairment of motor coordination, associated with neurodegeneration of specific brain regions, including cerebellum and striatum. The currently available therapies do not allow modification of disease progression. Neuropeptide Y (NPY) has been shown to exert potent neuroprotective effects by multiple pathways associated with the MJD mechanisms of disease. Thus, we evaluated NPY levels in MJD and investigated whether raising NPY by gene transfer would alleviate neuropathological and behavioural deficits in cerebellar and striatal mouse models of the disease. For that, a cerebellar transgenic and a striatal lentiviral-based models of MJD were used. NPY overexpression in the affected brain regions in these two mouse models was obtained by stereotaxic injection of adeno-associated viral vectors encoding NPY. Up to 8 weeks after viral injection, balance and motor coordination behaviour and neuropathology were analysed. We observed that NPY levels were decreased in two MJD patients' cerebella and in striata and cerebella of disease mouse models. Furthermore, overexpression of NPY alleviated the motor coordination impairments and attenuated the related neuropathological parameters, preserving cerebellar volume and granular layer thickness, reducing striatal lesion and decreasing mutant ataxin-3 aggregation. Additionally, NPY mediated increase of brain-derived neurotrophic factor levels and decreased neuroinflammation markers. Our data suggest that NPY is a potential therapeutic strategy for MJD.


Assuntos
Cerebelo/fisiopatologia , Doença de Machado-Joseph/terapia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Córtex Visual/fisiopatologia , Animais , Ataxina-3/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Regulação para Baixo , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Visual/metabolismo
19.
Biochim Biophys Acta ; 1852(8): 1658-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25960149

RESUMO

Aggregation and fibril formation of human alpha-Synuclein (αS) are neuropathological hallmarks of Parkinson's disease and other synucleinopathies. The molecular mechanisms of αS aggregation and fibrillogenesis are largely unknown. Several studies suggested a sequence of events from αS dimerization via oligomerization and pre-fibrillar aggregation to αS fibril formation. In contrast to αS, little evidence suggests that γS can form protein aggregates in the brain, and for ßS its neurotoxic properties and aggregation propensities are controversially discussed. These apparent differences in aggregation behavior prompted us to investigate the first step in Synuclein aggregation, i.e. the formation of dimers or oligomers, by Bimolecular Fluorescence Complementation in cells. This assay showed some Synuclein-specific limitations, questioning its performance on a single cell level. Nevertheless, we unequivocally demonstrate that all Synucleins can interact with each other in a very similar way. Given the divergent aggregation properties of the three Synucleins this suggests that formation of dimers is not predictive for the aggregation of αS, ßS or γS in the aged or diseased brain.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas/diagnóstico , Multimerização Proteica , Sinucleínas/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Prognóstico , Agregação Patológica de Proteínas/metabolismo , Isoformas de Proteínas , Sinucleínas/química , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , beta-Sinucleína/química , beta-Sinucleína/metabolismo , gama-Sinucleína/química , gama-Sinucleína/metabolismo
20.
J Neurochem ; 134(2): 261-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25807858

RESUMO

A lesion to the rat rubrospinal tract is a model for traumatic spinal cord lesions and results in atrophy of the red nucleus neurons, axonal dieback, and locomotor deficits. In this study, we used adeno-associated virus (AAV)-mediated over-expression of BAG1 and ROCK2-shRNA in the red nucleus to trace [by co-expression of enhanced green fluorescent protein (EGFP)] and treat the rubrospinal tract after unilateral dorsal hemisection. We investigated the effects of targeted gene therapy on neuronal survival, axonal sprouting of the rubrospinal tract, and motor recovery 12 weeks after unilateral dorsal hemisection at Th8 in rats. In addition to the evaluation of BAG1 and ROCK2 as therapeutic targets in spinal cord injury, we aimed to demonstrate the feasibility and the limits of an AAV-mediated protein over-expression versus AAV.shRNA-mediated down-regulation in this traumatic CNS lesion model. Our results demonstrate that BAG1 and ROCK2-shRNA both promote neuronal survival of red nucleus neurons and enhance axonal sprouting proximal to the lesion.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Regeneração Nervosa/fisiologia , Neurônios/patologia , Traumatismos da Medula Espinal/patologia , Fatores de Transcrição/biossíntese , Quinases Associadas a rho/biossíntese , Animais , Axônios , Sequência de Bases , Western Blotting , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Dependovirus , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Vetores Genéticos , Imuno-Histoquímica , Dados de Sequência Molecular , RNA Interferente Pequeno , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Núcleo Rubro/patologia , Fatores de Transcrição/genética , Quinases Associadas a rho/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA