Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Elife ; 122024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190604

RESUMO

Background: The dichotomy between the hypo- versus hyperkinetic nature of Parkinson's disease (PD) and dystonia, respectively, is thought to be reflected in the underlying basal ganglia pathophysiology. In this study, we investigated differences in globus pallidus internus (GPi) neuronal activity, and short- and long-term plasticity of direct pathway projections. Methods: Using microelectrode recording data collected from the GPi during deep brain stimulation surgery, we compared neuronal spiketrain features between people with PD and those with dystonia, as well as correlated neuronal features with respective clinical scores. Additionally, we characterized and compared readouts of short- and long-term synaptic plasticity using measures of inhibitory evoked field potentials. Results: GPi neurons were slower, bustier, and less regular in dystonia. In PD, symptom severity positively correlated with the power of low-beta frequency spiketrain oscillations. In dystonia, symptom severity negatively correlated with firing rate and positively correlated with neuronal variability and the power of theta frequency spiketrain oscillations. Dystonia was moreover associated with less long-term plasticity and slower synaptic depression. Conclusions: We substantiated claims of hyper- versus hypofunctional GPi output in PD versus dystonia, and provided cellular-level validation of the pathological nature of theta and low-beta oscillations in respective disorders. Such circuit changes may be underlain by disease-related differences in plasticity of striato-pallidal synapses. Funding: This project was made possible with the financial support of Health Canada through the Canada Brain Research Fund, an innovative partnership between the Government of Canada (through Health Canada) and Brain Canada, and of the Azrieli Foundation (LM), as well as a grant from the Banting Research Foundation in partnership with the Dystonia Medical Research Foundation (LM).


Assuntos
Gânglios da Base , Distonia , Globo Pálido , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Distonia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Feminino , Gânglios da Base/fisiopatologia , Globo Pálido/fisiopatologia , Idoso , Estimulação Encefálica Profunda , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Adulto
2.
Mov Disord ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051611

RESUMO

BACKGROUND: Recent imaging studies identified a brain network associated with clinical improvement following deep brain stimulation (DBS) in Parkinson's disease (PD), the PD response network. OBJECTIVES: This study aimed to assess the impact of neuromodulation on PD motor symptoms by targeting this network noninvasively using multifocal transcranial direct current stimulation (tDCS). METHODS: In a prospective, randomized, double-blinded, crossover trial, 21 PD patients (mean age 59.7 years, mean Hoehn & Yahr [H&Y] 2.4) received multifocal tDCS targeting the a-priori network. Twenty-minute sessions of tDCS and sham were administered on 2 days in randomized order. Movement Disorder Society-Unified Parkinson's Disease Rating Scale-Part III (MDS-UPDRS-III) scores were assessed. RESULTS: Before intervention, MDS-UPDRS-III scores were comparable in both conditions (stimulation days: 37.38 (standard deviation [SD] = 12.50, confidence interval [CI] = 32.04, 42.73) vs. sham days: 36.95 (SD = 13.94, CI = 30.99, 42.91), P = 0.63). Active stimulation resulted in a reduction by 3.6 points (9.7%) to 33.76 (SD = 11.19, CI = 28.98, 38.55) points, whereas no relevant change was observed after sham stimulation (36.43 [SD = 14.15, CI = 30.38, 42.48], average improvement: 0.5 [1.4%]). Repeated-measures analysis of variance (ANOVA) confirmed significance (main effect of time: F(1,20)=4.35, P < 0.05). Tukey's post hoc tests indicated MDS-UPDRS-III improvement after active stimulation (t [20] = 2.9, P = 0.03) but not after sham (t [20] = 0.42, P > 0.05). In a subset of patients that underwent DBS surgery later, their DBS response correlated with tDCS effects (R = 0.55, P(1) = 0.04). CONCLUSION: Noninvasive, multifocal tDCS targeting a DBS-derived network significantly improved PD motor symptoms. Despite a small effect size, this study provides proof of principle for the successful noninvasive neuromodulation of an invasively identified network. Future studies should investigate repeated tDCS sessions and their utility for screening before DBS surgery. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
J Parkinsons Dis ; 14(6): 1175-1192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39058451

RESUMO

Background: Postoperative delirium (POD) is a serious complication following deep brain stimulation (DBS) but only received little attention. Its main risk factors are higher age and preoperative cognitive deficits. These are also main risk factors for long-term cognitive decline after DBS in Parkinson's disease (PD). Objective: To identify risk factors for POD severity after DBS surgery in PD. Methods: 57 patients underwent DBS (21 female; age 60.2±8.2; disease duration 10.5±5.9 years). Preoperatively, general, PD- and surgery-specific predictors were recorded. Montreal Cognitive Assessment and the neuropsychological test battery CANTAB ConnectTM were used to test domain-specific cognition. Volumes of the cholinergic basal forebrain were calculated with voxel-based morphometry. POD severity was recorded with the delirium scales Confusion Assessment Method for Intensive Care Unit (CAM-ICU) and Nursing Delirium Scale (NU-DESC). Spearman correlations were calculated for univariate analysis of predictors and POD severity and linear regression with elastic net regularization and leave-one-out cross-validation was performed to fit a multivariable model. Results: 21 patients (36.8%) showed mainly mild courses of POD following DBS. Correlation between predicted and true POD severity was significant (spearman rho = 0.365, p = 0.001). Influential predictors were age (p < 0.001), deficits in attention and motor speed (p = 0.002), visual learning (p = 0.036) as well as working memory (p < 0.001), Nucleus basalis of Meynert volumes (p = 0.003) and burst suppression (p = 0.005). Conclusions: General but also PD- and surgery-specific factors were predictive of POD severity. These findings underline the multifaceted etiology of POD after DBS in PD. Valid predictive models must therefore consider general, PD- and surgery-specific factors.


Assuntos
Estimulação Encefálica Profunda , Delírio , Doença de Parkinson , Complicações Pós-Operatórias , Índice de Gravidade de Doença , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Masculino , Doença de Parkinson/terapia , Pessoa de Meia-Idade , Idoso , Fatores de Risco , Delírio/etiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/diagnóstico , Testes Neuropsicológicos
4.
J Neurol ; 271(5): 2639-2648, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353748

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a complex and fatal neurodegenerative movement disorder. Understanding the comorbidities and drug therapy is crucial for MSA patients' safety and management. OBJECTIVES: To investigate the pattern of comorbidities and aspects of drug therapy in MSA patients. METHODS: Cross-sectional data of MSA patients according to Gilman et al. (2008) diagnostic criteria and control patients without neurodegenerative diseases (non-ND) were collected from German, multicenter cohorts. The prevalence of comorbidities according to WHO ICD-10 classification and drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were identified using AiDKlinik®. RESULTS: The analysis included 254 MSA and 363 age- and sex-matched non-ND control patients. MSA patients exhibited a significantly higher burden of comorbidities, in particular diseases of the genitourinary system. Also, more medications were prescribed MSA patients, resulting in a higher prevalence of polypharmacy. Importantly, the risk of potential drug-drug interactions, including severe interactions and contraindicated combinations, was elevated in MSA patients. When comparing MSA-P and MSA-C subtypes, MSA-P patients suffered more frequently from diseases of the genitourinary system and diseases of the musculoskeletal system and connective tissue. CONCLUSIONS: MSA patients face a substantial burden of comorbidities, notably in the genitourinary system. This, coupled with increased polypharmacy and potential drug interactions, highlights the complexity of managing MSA patients. Clinicians should carefully consider these factors when devising treatment strategies for MSA patients.


Assuntos
Comorbidade , Interações Medicamentosas , Atrofia de Múltiplos Sistemas , Polimedicação , Humanos , Atrofia de Múltiplos Sistemas/epidemiologia , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Estudos Transversais , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Prevalência , Alemanha/epidemiologia
5.
J Neurol ; 271(2): 782-793, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803149

RESUMO

BACKGROUND: Progressive supranuclear palsy (PSP) is usually diagnosed in elderly. Currently, little is known about comorbidities and the co-medication in these patients. OBJECTIVES: To explore the pattern of comorbidities and co-medication in PSP patients according to the known different phenotypes and in comparison with patients without neurodegenerative disease. METHODS: Cross-sectional data of PSP and patients without neurodegenerative diseases (non-ND) were collected from three German multicenter observational studies (DescribePSP, ProPSP and DANCER). The prevalence of comorbidities according to WHO ICD-10 classification and the prevalence of drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were evaluated using AiDKlinik®. RESULTS: In total, 335 PSP and 275 non-ND patients were included in this analysis. The prevalence of diseases of the circulatory and the nervous system was higher in PSP at first level of ICD-10. Dorsopathies, diabetes mellitus, other nutritional deficiencies and polyneuropathies were more frequent in PSP at second level of ICD-10. In particular, the summed prevalence of cardiovascular and cerebrovascular diseases was higher in PSP patients. More drugs were administered in the PSP group leading to a greater percentage of patients with polypharmacy. Accordingly, the prevalence of potential drug-drug interactions was higher in PSP patients, especially severe and moderate interactions. CONCLUSIONS: PSP patients possess a characteristic profile of comorbidities, particularly diabetes and cardiovascular diseases. The eminent burden of comorbidities and resulting polypharmacy should be carefully considered when treating PSP patients.


Assuntos
Doenças Neurodegenerativas , Paralisia Supranuclear Progressiva , Humanos , Idoso , Paralisia Supranuclear Progressiva/tratamento farmacológico , Paralisia Supranuclear Progressiva/epidemiologia , Paralisia Supranuclear Progressiva/diagnóstico , Doenças Neurodegenerativas/epidemiologia , Estudos Transversais , Comorbidade
6.
Neuro Oncol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079480

RESUMO

BACKGROUND: Cerebellar mutism syndrome (CMS) is a common and debilitating complication of posterior fossa tumour surgery in children. Affected children exhibit communication and social impairments that overlap phenomenologically with subsets of deficits exhibited by children with Autism spectrum disorder (ASD). Although both CMS and ASD are thought to involve disrupted cerebro-cerebellar circuitry, they are considered independent conditions due to an incomplete understanding of their shared neural substrates. METHODS: In this study, we analyzed post-operative cerebellar lesions from 90 children undergoing posterior fossa resection of medulloblastoma, 30 of whom developed CMS. Lesion locations were mapped to a standard atlas, and the networks functionally connected to each lesion were computed in normative adult and paediatric datasets. Generalizability to ASD was assessed using an independent cohort of children with ASD and matched controls (n=427). RESULTS: Lesions in children who developed CMS involved the vermis and inferomedial cerebellar lobules. They engaged large-scale cerebellothalamocortical circuits with a preponderance for the prefrontal and parietal cortices in the paediatric and adult connectomes, respectively. Moreover, with increasing connectomic age, CMS-associated lesions demonstrated stronger connectivity to the midbrain/red nuclei, thalami and inferior parietal lobules and weaker connectivity to prefrontal cortex. Importantly, the CMS-associated lesion network was independently reproduced in ASD and correlated with communication and social deficits, but not repetitive behaviours. CONCLUSIONS: Our findings indicate that CMS-associated lesions result in an ASD-like network disturbance that occurs during sensitive windows of brain development. A common network disturbance between CMS and ASD may inform improved treatment strategies for affected children.

7.
PLoS One ; 18(10): e0292180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37788254

RESUMO

Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Cuidados Paliativos
8.
Mov Disord ; 38(12): 2185-2196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823518

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an effective treatment option for patients with Parkinson's disease (PD). However, clinical programming remains challenging with segmented electrodes. OBJECTIVE: Using novel sensing-enabled neurostimulators, we investigated local field potentials (LFPs) and their modulation by DBS to assess whether electrophysiological biomarkers may facilitate clinical programming in chronically implanted patients. METHODS: Sixteen patients (31 hemispheres) with PD implanted with segmented electrodes in the subthalamic nucleus and a sensing-enabled neurostimulator were included in this study. Recordings were conducted 3 months after DBS surgery following overnight withdrawal of dopaminergic medication. LFPs were acquired while stimulation was turned OFF and during a monopolar review of both directional and ring contacts. Directional beta power and stimulation-induced beta power suppression were computed. Motor performance, as assessed by a pronation-supination task, clinical programming and electrode placement were correlated to directional beta power and stimulation-induced beta power suppression. RESULTS: Better motor performance was associated with stronger beta power suppression at higher stimulation amplitudes. Across directional contacts, differences in directional beta power and the extent of stimulation-induced beta power suppression predicted motor performance. However, within individual hemispheres, beta power suppression was superior to directional beta power in selecting the contact with the best motor performance. Contacts clinically activated for chronic stimulation were associated with stronger beta power suppression than non-activated contacts. CONCLUSIONS: Our results suggest that stimulation-induced ß power suppression is superior to directional ß power in selecting the clinically most effective contact. In sum, electrophysiological biomarkers may guide programming of directional DBS systems in PD patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Ritmo beta/fisiologia , Núcleo Subtalâmico/fisiologia , Biomarcadores
9.
Neurol Sci ; 44(5): 1625-1631, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36607479

RESUMO

INTRODUCTION AND GOAL: The investigation of gender differences in treatment response is crucial for effective personalized therapies. With only 30%, women are underrepresented in trials for deep brain stimulation (DBS) in Parkinson's disease (PD). It is therefore important to evaluate gender-specific outcomes of DBS in PD in order to improve therapeutic counseling. METHODS: We analyzed clinical outcome parameters of 203 patients with PD that underwent DBS surgery targeting the subthalamic nucleus (STN) at our movement disorder center. A total of 27.6% of patients were female and 72.4% male. Motor and non-motor scores were compared before and 1 year after DBS surgery (1y FU) using Wilcoxon signed-rank tests and gender specific outcomes were analyzed with chi-square tests. RESULTS: At 1y FU, we found significant improvement in UPDRS II, UPDRS III (35.78 ± 36.14% MedOFF vs. StimON-MedOFF), UPDRS IV, depression (BDI-II), and health-related disability as (ADL) that showed no gender-specific differences. No significant change was revealed for UPDRS I, QUIP, and DemTect for the entire cohort. However, when analyzing both groups separately, only women improved in general cognition (plus 1.26 ± 3.03 DemTect points, p = 0.014*), whereas only men ameliorated in depression (minus 1.97 ± 6.92 BDI-II points, p = 0.002**) and impulsivity (minus 2.80 ± 7.27 QUIP points, p = 0.004**). Chi-square tests, however, revealed no significant differences between genders. CONCLUSION AND OUTLOOK: STN-DBS is a highly effective treatment for motor and non-motor symptoms of PD for both women and men but our study hints towards gender-specific outcomes in non-motor-domains like cognition, depressive symptoms, and impulsivity. To explore this in more detail, larger cohorts need to be investigated in multicenter trials.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Feminino , Masculino , Doença de Parkinson/diagnóstico , Resultado do Tratamento , Núcleo Subtalâmico/cirurgia , Testes de Estado Mental e Demência
10.
J Neurol Surg A Cent Eur Neurosurg ; 84(3): 247-254, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35100633

RESUMO

BACKGROUND: With increasing prevalence of Parkinson's disease (PD), instrumentation surgery of the thoracolumbar spine of PD patients grows in importance. Poor operative results with high rates of revision surgery have been reported. The goal of this study was to compare the biomechanical complications of thoracolumbar instrumentation surgery of patients with and without PD. METHODS: In a retrospective case-control study, we compared 16 PD patients with a matched cohort of 104 control patients regarding the following postinstrumentation complications: (1) adjacent joint disease, (2) material failure, and (3) material loosening. Also, we compared the spinal bone density, which is the main prognostic criteria for failed instrumentation surgery, between the groups. RESULTS: We found the rate of material revision to be significantly higher in PD patients (43.8 vs. 13.5%, p = 0.008, odds ratio (OR) = 5.0). Furthermore, the indications for revision surgery differed between the groups, with more hardware failures in the PD group and more adjacent segment degeneration in the control group. PD patients profited from modern operation techniques (percutaneous instrumentation and CT-navigated screw implantation). Hospitalization was significantly longer for PD patients (20.2 ± 15.1 vs. 14.1 ± 8.9 days, p = 0.03). CONCLUSION: PD patients exhibit challenging biomechanical demands on instrumenting the spine. Besides osteoporosis, especially sagittal imbalance, gait disturbance, and altered muscle tone may be contributive. PD patients may particularly profit from navigated and less invasive surgical techniques.


Assuntos
Doença de Parkinson , Fusão Vertebral , Humanos , Estudos de Casos e Controles , Estudos Retrospectivos , Doença de Parkinson/cirurgia , Doença de Parkinson/complicações , Fusão Vertebral/métodos , Coluna Vertebral/cirurgia , Vértebras Lombares/cirurgia , Vértebras Torácicas/cirurgia
11.
Front Neurol ; 13: 1041449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36468049

RESUMO

Introduction: Subthalamic Deep Brain Stimulation (STN-DBS) is a safe and well-established therapy for the management of motor symptoms refractory to best medical treatment in patients with Parkinson's disease (PD). Early intervention is discussed especially for Early-onset PD (EOPD) patients that present with an age of onset ≤ 45-50 years and see themselves often confronted with high psychosocial demands. Methods: We retrospectively assessed the effect of STN-DBS at 12 months follow-up (12-MFU) in 46 EOPD-patients. Effects of stimulation were evaluated by comparison of disease-specific scores for motor and non-motor symptoms including impulsiveness, apathy, mood, quality of life (QoL), cognition before surgery and in the stimulation ON-state without medication. Further, change in levodopa equivalent dosage (LEDD) after surgery, DBS parameter, lead localization, adverse and serious adverse events as well as and possible additional clinical features were assessed. Results: PD-associated gene mutations were found in 15% of our EOPD-cohort. At 12-MFU, mean motor scores had improved by 52.4 ± 17.6% in the STIM-ON/MED-OFF state compared to the MED-OFF state at baseline (p = 0.00; n = 42). These improvements were accompanied by a significant 59% LEDD reduction (p < 0.001), a significant 6.6 ± 16.1 points reduction of impulsivity (p = 0.02; n = 35) and a significant 30 ± 50% improvement of QoL (p = 0.01). At 12-MFU, 9 patients still worked full- and 6 part-time. Additionally documented motor and/or neuropsychiatric features decreased from n = 41 at baseline to n = 14 at 12-MFU. Conclusion: The present study-results demonstrate that EOPD patients with and without known genetic background benefit from STN-DBS with significant improvement in motor as well as non-motor symptoms. In line with this, patients experienced a meaningful reduction of additional neuropsychiatric features. Physicians as well as patients have an utmost interest in possible predictors for the putative DBS outcome in a cohort with such a highly complex clinical profile. Longitudinal monitoring of DBS-EOPD-patients over long-term intervals with standardized comprehensive clinical assessment, accurate phenotypic characterization and documentation of clinical outcomes might help to gain insights into disease etiology, to contextualize genomic information and to identify predictors of optimal DBS candidates as well as those in danger of deterioration and/or non-response in the future.

12.
Eur Spine J ; 31(12): 3316-3323, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36194297

RESUMO

PURPOSE: There is a high demand on spinal surgery in patients with Parkinson's disease (PD) but the results are sobering. Although detailed clinical and radiological diagnostics were carried out with great effort and expense, the biodynamic properties of the spine of PD patients have never been considered. We propose a noninvasive method to quantify the impairment of motion abilities in patients with PD. METHODS: We present an analytical cross-sectional study of 21 patients with severe PD. All patients underwent a biodynamic assessment during a standardized movement-choreography. Thus, individual spinal motion profiles of each patient were objectively assessed and compared with a large comparative cohort of individuals without PD. Moreover, clinical scores to quantify motor function and lumbar back pain were collected and X-ray scans of the spine in standing position were taken and analysed. RESULTS: Biodynamic measurement showed that 36.9% of the assessed motions of all PD patients were severely impaired. Men were generally more functionally impaired than women, in 52% of all motion parameters. The neurological and radiological diagnostics recorded pathological values, of which UPDRS-III ON correlated with findings of the biodynamics assessment (R = 0.52, p = 0.02). CONCLUSIONS: The decision to operate on a PD patient's spine is far-reaching and requires careful consideration. Neurological and radiological scores did not correlate with the biodynamics of the spine. The resulting motion profile could be used as individual predictive factor to estimate whether patients are eligible for spinal surgery or alternative therapies.


Assuntos
Dor Lombar , Doença de Parkinson , Masculino , Humanos , Feminino , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Estudos Transversais , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Movimento
13.
Brain Stimul ; 15(5): 1223-1232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36058524

RESUMO

BACKGROUND: Deep brain stimulation (DBS) provides symptomatic relief in a growing number of neurological indications, but local synaptic dynamics in response to electrical stimulation that may relate to its mechanism of action have not been fully characterized. OBJECTIVE: The objectives of this study were to (1) study local synaptic dynamics during high frequency extracellular stimulation of the subthalamic nucleus (STN), and (2) compare STN synaptic dynamics with those of the neighboring substantia nigra pars reticulata (SNr). METHODS: Two microelectrodes were advanced into the STN and SNr of patients undergoing DBS surgery for Parkinson's disease (PD). Neuronal firing and evoked field potentials (fEPs) were recorded with one microelectrode during stimulation from an adjacent microelectrode. RESULTS: Inhibitory fEPs could be discerned within the STN and their amplitudes predicted bidirectional effects on neuronal firing (p = .013). There were no differences between STN and SNr inhibitory fEP dynamics at low stimulation frequencies (p > .999). However, inhibitory neuronal responses were sustained over time in STN during high frequency stimulation but not in SNr (p < .001) where depression of inhibitory input was coupled with a return of neuronal firing (p = .003). INTERPRETATION: Persistent inhibitory input to the STN suggests a local synaptic mechanism for the suppression of subthalamic firing during high frequency stimulation. Moreover, differences in the resiliency versus vulnerability of inhibitory inputs to the STN and SNr suggest a projection source- and frequency-specificity for this mechanism. The feasibility of targeting electrophysiologically-identified neural structures may provide insight into how DBS achieves frequency-specific modulation of neuronal projections.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Microeletrodos , Doença de Parkinson/terapia , Substância Negra , Núcleo Subtalâmico/fisiologia
14.
Elife ; 112022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35594135

RESUMO

Background: Deep brain stimulation (DBS) electrode implant trajectories are stereotactically defined using preoperative neuroimaging. To validate the correct trajectory, microelectrode recordings (MERs) or local field potential recordings can be used to extend neuroanatomical information (defined by MRI) with neurophysiological activity patterns recorded from micro- and macroelectrodes probing the surgical target site. Currently, these two sources of information (imaging vs. electrophysiology) are analyzed separately, while means to fuse both data streams have not been introduced. Methods: Here, we present a tool that integrates resources from stereotactic planning, neuroimaging, MER, and high-resolution atlas data to create a real-time visualization of the implant trajectory. We validate the tool based on a retrospective cohort of DBS patients (N = 52) offline and present single-use cases of the real-time platform. Results: We establish an open-source software tool for multimodal data visualization and analysis during DBS surgery. We show a general correspondence between features derived from neuroimaging and electrophysiological recordings and present examples that demonstrate the functionality of the tool. Conclusions: This novel software platform for multimodal data visualization and analysis bears translational potential to improve accuracy of DBS surgery. The toolbox is made openly available and is extendable to integrate with additional software packages. Funding: Deutsche Forschungsgesellschaft (410169619, 424778381), Deutsches Zentrum für Luft- und Raumfahrt (DynaSti), National Institutes of Health (2R01 MH113929), and Foundation for OCD Research (FFOR).


Deep brain stimulation is an established therapy for patients with Parkinson's disease and an emerging option for other neurological conditions. Electrodes are implanted deep in the brain to stimulate precise brain regions and control abnormal brain activity in those areas. The most common target for Parkinson's disease, for instance, is a structure called the subthalamic nucleus, which sits at the base of the brain, just above the brain stem. To ensure electrodes are placed correctly, surgeons use various sources of information to characterize the patient's brain anatomy and decide on an implant site. These data include brain scans taken before surgery and recordings of brain activity taken during surgery to confirm the intended implant site. Sometimes, the brain activity signals from this last confirmation step may slightly alter surgical plans. It represents one of many challenges for clinical teams: to analyse, assimilate, and communicate data as it is collected during the procedure. Oxenford et al. developed a software pipeline to aggregate the data surgeons use to implant electrodes. The open-source platform, dubbed Lead-OR, visualises imaging data and brain activity recordings (termed electrophysiology data) in real time. The current set-up integrates with commercial tools and existing software for surgical planning. Oxenford et al. tested Lead-OR on data gathered retrospectively from 32 patients with Parkinson's who had electrodes implanted in their subthalamic nucleus. The platform showed good agreement between imaging and electrophysiology data, although there were some unavoidable discrepancies, arising from limitations in the imaging pipeline and from the surgical procedure. Lead-OR was also able to correct for brain shift, which is where the brain moves ever so slightly in the skull. With further validation, this proof-of-concept software could serve as a useful decision-making tool for surgical teams implanting electrodes for deep brain stimulation. In time, if implemented, its use could improve the accuracy of electrode placement, translating into better surgical outcomes for patients. It also has the potential to integrate forthcoming ultra-high-resolution data from current brain mapping projects, and other commercial surgical planning tools.


Assuntos
Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Humanos , Imageamento por Ressonância Magnética/métodos , Microeletrodos , Neuroimagem/métodos , Estudos Retrospectivos
15.
Brain ; 145(7): 2407-2421, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35441231

RESUMO

Freezing of gait is a debilitating symptom in advanced Parkinson's disease and responds heterogeneously to treatments such as deep brain stimulation. Recent studies indicated that cortical dysfunction is involved in the development of freezing, while evidence depicting the specific role of the primary motor cortex in the multi-circuit pathology of freezing is lacking. Since abnormal beta-gamma phase-amplitude coupling recorded from the primary motor cortex in patients with Parkinson's disease indicates parkinsonian state and responses to therapeutic deep brain stimulation, we hypothesized this metric might reveal unique information on understanding and improving therapy for freezing of gait. Here, we directly recorded potentials in the primary motor cortex using subdural electrocorticography and synchronously captured gait freezing using optoelectronic motion-tracking systems in 16 freely-walking patients with Parkinson's disease who received subthalamic nucleus deep brain stimulation surgery. Overall, we recorded 451 timed up-and-go walking trials and quantified 7073 s of stable walking and 3384 s of gait freezing in conditions of on/off-stimulation and with/without dual-tasking. We found that (i) high beta-gamma phase-amplitude coupling in the primary motor cortex was detected in freezing trials (i.e. walking trials that contained freezing), but not non-freezing trials, and the high coupling in freezing trials was not caused by dual-tasking or the lack of movement; (ii) non-freezing episodes within freezing trials also demonstrated abnormally high couplings, which predicted freezing severity; (iii) deep brain stimulation of subthalamic nucleus reduced these abnormal couplings and simultaneously improved freezing; and (iv) in trials that were at similar coupling levels, stimulation trials still demonstrated lower freezing severity than no-stimulation trials. These findings suggest that elevated phase-amplitude coupling in the primary motor cortex indicates higher probabilities of freezing. Therapeutic deep brain stimulation alleviates freezing by both decoupling cortical oscillations and enhancing cortical resistance to abnormal coupling. We formalized these findings to a novel 'bandwidth model,' which specifies the role of cortical dysfunction, cognitive burden and therapeutic stimulation on the emergence of freezing. By targeting key elements in the model, we may develop next-generation deep brain stimulation approaches for freezing of gait.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Subtalâmico , Estimulação Encefálica Profunda/efeitos adversos , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Caminhada/fisiologia
16.
Mov Disord ; 37(2): 291-301, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112384

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) effectively treats motor symptoms and quality of life (QoL) of advanced and fluctuating early Parkinson's disease. Little is known about the relation between electrode position and changes in symptom control and ultimately QoL. OBJECTIVES: The relation between the stimulated part of the STN and clinical outcomes, including the motor score of the Unified Parkinson's Disease Rating Scale (UPDRS) and the quality-of-life questionnaire, was assessed in a subcohort of the EARLYSTIM study. METHODS: Sixty-nine patients from the EARLYSTIM cohort who underwent DBS, with a comprehensive clinical characterization before and 24 months after surgery, were included. Intercorrelations of clinical outcome changes, correlation between the affected functional parts of the STN, and changes in clinical outcomes were investigated. We further calculated sweet spots for different clinical parameters. RESULTS: Improvements in the UPDRS III and Parkinson's Disease Questionnaire (PDQ-39) correlated positively with the extent of the overlap with the sensorimotor STN. The sweet spots for the UPDRS III (x = 11.6, y = -13.1, z = -6.3) and the PDQ-39 differed (x = 14.8, y = -12.4, z = -4.3) ~3.8 mm. CONCLUSIONS: The main influence of DBS on QoL is likely mediated through the sensory-motor basal ganglia loop. The PDQ sweet spot is located in a posteroventral spatial location in the STN territory. For aspects of QoL, however, there was also evidence of improvement through stimulation of the other STN subnuclei. More research is necessary to customize the DBS target to individual symptoms of each patient. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Qualidade de Vida , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento
17.
Exp Neurol ; 350: 113978, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026227

RESUMO

Deep Brain Stimulation (DBS) is an efficacious treatment option for an increasing range of brain disorders. To enhance our knowledge about the mechanisms of action of DBS and to probe novel targets, basic research in animal models with DBS is an essential research base. Beyond nonhuman primate, pig, and mouse models, the rat is a widely used animal model for probing DBS effects in basic research. Reconstructing DBS electrode placement after surgery is crucial to associate observed effects with modulating a specific target structure. Post-mortem histology is a commonly used method for reconstructing the electrode location. In humans, however, neuroimaging-based electrode localizations have become established. For this reason, we adapt the open-source software pipeline Lead-DBS for DBS electrode localizations from humans to the rat model. We validate our localization results by inter-rater concordance and a comparison with the conventional histological method. Finally, using the open-source software pipeline OSS-DBS, we demonstrate the subject-specific simulation of the VTA and the activation of axon models aligned to pathways representing neuronal fibers, also known as the pathway activation model. Both activation models yield a characterization of the impact of DBS on the target area. Our results suggest that the proposed neuroimaging-based method can precisely localize DBS electrode placements that are essentially rater-independent and yield results comparable to the histological gold standard. The advantages of neuroimaging-based electrode localizations are the possibility of acquiring them in vivo and combining electrode reconstructions with advanced imaging metrics, such as those obtained from diffusion or functional magnetic resonance imaging (MRI). This paper introduces a freely available open-source pipeline for DBS electrode reconstructions in rats. The presented initial validation results are promising.


Assuntos
Estimulação Encefálica Profunda , Modelos Neurológicos , Animais , Axônios , Eletrodos Implantados , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Neuroimagem , Ratos , Reprodutibilidade dos Testes , Software , Área Tegmentar Ventral/diagnóstico por imagem
18.
Stereotact Funct Neurosurg ; 100(1): 8-13, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34488223

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) has become a well-established treatment modality for a variety of conditions over the last decades. Multiple surgeries are an essential part in the postoperative course of DBS patients if nonrechargeable implanted pulse generators (IPGs) are applied. So far, the rate of subclinical infections in this field is unknown. In this prospective cohort study, we used sonication to evaluate possible microbial colonization of IPGs from replacement surgery. METHODS: All consecutive patients undergoing IPG replacement between May 1, 2019 and November 15, 2020 were evaluated. The removed hardware was investigated using sonication to detect biofilm-associated bacteria. Demographic and clinical data were analyzed. RESULTS: A total of 71 patients with a mean (±SD) of 64.5 ± 15.3 years were evaluated. In 23 of these (i.e., 32.4%) patients, a positive sonication culture was found. In total, 25 microorganisms were detected. The most common isolated microorganisms were Cutibacterium acnes (formerly known as Propionibacterium acnes) (68%) and coagulase-negative Staphylococci (28%). Within the follow-up period (5.2 ± 4.3 months), none of the patients developed a clinical manifest infection. DISCUSSIONS/CONCLUSIONS: Bacterial colonization of IPGs without clinical signs of infection is common but does not lead to manifest infection. Further larger studies are warranted to clarify the impact of low-virulent pathogens in clinically asymptomatic patients.


Assuntos
Bactérias , Estimulação Encefálica Profunda , Eletrodos Implantados , Contaminação de Equipamentos , Sonicação , Idoso , Infecções Assintomáticas , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Biofilmes , Estimulação Encefálica Profunda/instrumentação , Remoção de Dispositivo , Eletrodos Implantados/microbiologia , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Reoperação
19.
Brain ; 145(1): 237-250, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34264308

RESUMO

Exaggerated local field potential bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus of patients with Parkinson's disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the subthalamic nucleus local field potential in Parkinson's disease, and that together these different states predict motor impairment with high fidelity. Local field potentials were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the subthalamic nucleus. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. Local field potentials were analysed using hidden Markov modelling to identify transient spectral states with frequencies under 40 Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional local field potential states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all local field potential states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients' hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the subthalamic nucleus local field potential have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how local field potential feedback can be made more informative in closed-loop deep brain stimulation systems.


Assuntos
Estimulação Encefálica Profunda , Transtornos Motores , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiologia
20.
Neurobiol Dis ; 155: 105372, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932557

RESUMO

Deep brain stimulation (DBS) surgery offers a unique opportunity to record local field potentials (LFPs), the electrophysiological population activity of neurons surrounding the depth electrode in the target area. With direct access to the subcortical activity, LFP research has provided valuable insight into disease mechanisms and cognitive processes and inspired the advent of adaptive DBS for Parkinson's disease (PD). A frequency-based framework is usually employed to interpret the implications of LFP signatures in LFP studies on PD. This approach standardizes the methodology, simplifies the interpretation of LFP patterns, and makes the results comparable across studies. Importantly, previous works have found that activity patterns do not represent disease-specific activity but rather symptom-specific or task-specific neuronal signatures that relate to the current motor, cognitive or emotional state of the patient and the underlying disease. In the present review, we aim to highlight distinguishing features of frequency-specific activities, mainly within the motor domain, recorded from DBS electrodes in patients with PD. Associations of the commonly reported frequency bands (delta, theta, alpha, beta, gamma, and high-frequency oscillations) to motor signs are discussed with respect to band-related phenomena such as individual tremor and high/low beta frequency activity, as well as dynamic transients of beta bursts. We provide an overview on how electrophysiology research in DBS patients has revealed and will continuously reveal new information about pathophysiology, symptoms, and behavior, e.g., when combining deep LFP and surface electrocorticography recordings.


Assuntos
Doença de Parkinson/fisiopatologia , Potenciais de Ação/fisiologia , Estimulação Encefálica Profunda , Eletrofisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA