Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurovirol ; 23(3): 394-403, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28116674

RESUMO

Herpes simplex virus type 1 (HSV-1) encephalitis (HSE) is the most common fatal sporadic encephalitis in developed countries. There is evidence from HSE animal models that not only direct virus-mediated damage caused but also the host's immune response contributes to the high mortality of the disease. Chemokines modulate and orchestrate this immune response. Previous experimental studies in HSE models identified the chemokine receptor CXCR3 and its ligands as molecules with a high impact on the course of HSE in mouse models. In this study, the role of the chemokine receptor CXCR3 was evaluated after intranasal infection with the encephalitogenic HSV-1 strain 17 syn+ using CXCR3-deficient mice (CXCR3-/-) and wild-type controls. We demonstrated a neurotropic viral spread into the CNS of after intranasal infection. Although viral load and histological distribution of infected neurons were independent from CXCR3 signaling early after infection, CXCR3-deficient mice cleared HSV-1 more efficiently 14 days after infection. Furthermore, CXCR3 deficiency led to a decreased weight loss in mice after HSV-1 infection. T cell infiltration and microglial activation was prominently reduced by inhibition of CXCR3 signaling. Quantitative PCR of proinflammatory cytokines and chemokines confirmed the reduced neuroinflammatory response in CXCR3-deficient mice during HSE. Our results demonstrate that the recruitment of peripheral immune cells into the CNS, induction of neuroinflammation, and consecutive weight loss during herpes encephalitis is modulated by CXCR3 signaling. Interruption of the CXCR3 pathway ameliorates the detrimental host immune response and in turn, leads paradoxically to an enhanced viral clearance after intranasal infection. Our data gives further insight into the role of CXCR3 during HSE after intranasal infection.


Assuntos
Encéfalo/imunologia , Resistência à Doença/genética , Encefalite por Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Receptores CXCR3/deficiência , Administração Intranasal , Animais , Encéfalo/virologia , Movimento Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , DNA Viral/genética , DNA Viral/imunologia , Modelos Animais de Doenças , Encefalite por Herpes Simples/patologia , Encefalite por Herpes Simples/virologia , Regulação da Expressão Gênica , Herpesvirus Humano 1/crescimento & desenvolvimento , Humanos , Interferon gama/genética , Interferon gama/imunologia , Leucócitos/imunologia , Leucócitos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Microglia/virologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Carga Viral , Redução de Peso/imunologia
2.
J Invest Dermatol ; 135(11): 2676-2687, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26076314

RESUMO

Herpes simplex virus-type 1 (HSV-1) causes the majority of cutaneous viral infections. Viral infections are controlled by the immune system, and CD8(+) cytotoxic T-lymphocytes (CTLs) have been shown to be crucial during the clearance of HSV-1 infections. Although epidermal Langerhans cells (LCs) are the first dendritic cells (DCs) to come into contact with the virus, it has been shown that the processing of viral antigens and the differentiation of antiviral CTLs are mediated by migratory CD103(+) dermal DCs and CD8α(+) lymph node-resident DCs. In vivo regulatory T-cells (Tregs) are implicated in the regulation of antiviral immunity and we have shown that signaling via the receptor activator of NF-κB (RANK) and its ligand RANKL mediates the peripheral expansion of Tregs. However, in addition to expanding Tregs, RANK-RANKL interactions are involved in the control of antimicrobial immunity by upregulating the priming of CD4(+) effector T cells in LCMV infection or by the generation of parasite-specific CD8(+) T cells in Trypanosoma cruzi infection. Here, we demonstrate that cutaneous RANK-RANKL signaling is critical for the induction of CD8-mediated antiviral immune responses during HSV-1 infection of the skin by preventing virus-induced LC apoptosis, improving antigen transport to regional lymph nodes, and increasing the CTL priming capacity of lymph node DCs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpes Simples/imunologia , Células de Langerhans/imunologia , Ligante RANK/imunologia , Receptor Ativador de Fator Nuclear kappa-B/imunologia , Animais , Apoptose/imunologia , Biomarcadores/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Herpes Simples/metabolismo , Herpesvirus Humano 1/imunologia , Humanos , Imunidade/fisiologia , Células de Langerhans/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligante RANK/genética , Ligante RANK/metabolismo , Distribuição Aleatória , Receptor Ativador de Fator Nuclear kappa-B/genética , Sensibilidade e Especificidade , Transdução de Sinais , Regulação para Cima
3.
Cell Microbiol ; 15(11): 1818-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23601855

RESUMO

Human Papillomaviruses (HPVs) are the etiological agents of cervical cancer, and HPV-16 is the most prevalent type. Several HPVs require heparan sulfate proteoglycans (HSPGs) for cell binding. Here, we analyse the phenomenon that preincubation of HPV-16 with increasing concentrations of heparin results in partial restoration rather than more efficient inhibition of infection. While corroborating that the HSPGs are cell-binding receptors for HPV-16, heparin-preincubated virus bound to the extracellular matrix (ECM) via laminin-332. Furthermore, the interaction of virions with heparin, a representative of the highly sulfated S-domains of heparan sulfate (HS) chains of HSPGs, allowed HPV-16 infection in the absence of cell surface HSPGs. Therefore, we concluded that specific glycan moieties but not specific HSPG protein backbones are required for infection. The increased binding of an epitope-specific antibody to the viral capsid after heparin binding suggested that initial conformational changes in the HPV-16 virion occur during infection by interaction with'heparin-like' domains of cellular HSPGs. We propose that HS sequences with specific sulfation patterns are required to facilitate HPV-16 infection.


Assuntos
Proteínas do Capsídeo/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina/metabolismo , Papillomavirus Humano 16/efeitos dos fármacos , Papillomavirus Humano 16/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Ligação Viral/efeitos dos fármacos , Linhagem Celular , Epitopos/metabolismo , Humanos , Ligação Proteica , Calinina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA