Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604989

RESUMO

κB-Ras (NF-κB inhibitor-interacting Ras-like protein) GTPases are small Ras-like GTPases but harbor interesting differences in important sequence motifs. They act in a tumor-suppressive manner as negative regulators of Ral (Ras-like) GTPase and NF-κB signaling, but little is known about their mode of function. Here, we demonstrate that, in contrast to predictions based on primary structure, κB-Ras GTPases possess hydrolytic activity. Combined with low nucleotide affinity, this renders them fast-cycling GTPases that are predominantly GTP-bound in cells. We characterize the impact of κB-Ras mutations occurring in tumors and demonstrate that nucleotide binding affects κB-Ras stability but is not strictly required for RalGAP (Ral GTPase-activating protein) binding. This demonstrates that κB-Ras control of RalGAP/Ral signaling occurs in a nucleotide-binding- and switch-independent fashion.

2.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 498-507, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204816

RESUMO

Reverse gyrase is the only topoisomerase that introduces positive supercoils into DNA in an ATP-dependent reaction. Positive DNA supercoiling becomes possible through the functional cooperation of the N-terminal helicase domain of reverse gyrase with its C-terminal type IA topoisomerase domain. This cooperation is mediated by a reverse-gyrase-specific insertion into the helicase domain termed the `latch'. The latch consists of a globular domain inserted at the top of a ß-bulge loop that connects this globular part to the helicase domain. While the globular domain shows little conservation in sequence and length and is dispensable for DNA supercoiling, the ß-bulge loop is required for supercoiling activity. It has previously been shown that the ß-bulge loop constitutes a minimal latch that couples ATP-dependent processes in the helicase domain to DNA processing by the topoisomerase domain. Here, the crystal structure of Thermotoga maritima reverse gyrase with such a ß-bulge loop as a minimal latch is reported. It is shown that the ß-bulge loop supports ATP-dependent DNA supercoiling of reverse gyrase without engaging in specific interactions with the topoisomerase domain. When only a small latch or no latch is present, a helix in the nearby helicase domain of T. maritima reverse gyrase partially unfolds. Comparison of the sequences and predicted structures of latch regions in other reverse gyrases shows that neither sequence nor structure are decisive factors for latch functionality; instead, the decisive factors are likely to be electrostatics and plain steric bulk.


Assuntos
DNA Helicases , DNA Topoisomerases Tipo I , Estrutura Terciária de Proteína , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Helicases/química , DNA , Trifosfato de Adenosina
3.
Chem Sci ; 14(19): 5204-5213, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37206380

RESUMO

Protein trans-splicing mediated by a split intein reconstitutes a protein backbone from two parts. This virtually traceless autoprocessive reaction provides the basis for numerous protein engineering applications. Protein splicing typically proceeds through two thioester or oxyester intermediates involving the side chains of cysteine or serine/threonine residues. A cysteine-less split intein has recently attracted particular interest as it can splice under oxidizing conditions and is orthogonal to disulfide or thiol bioconjugation chemistries. Here, we report the split PolB16 OarG intein, a second such cysteine-independent intein. As a unique trait, it is atypically split with a short intein-N precursor fragment of only 15 amino acids, the shortest characterized to date, which was chemically synthesized to enable protein semi-synthesis. By rational engineering we obtained a high-yielding, improved split intein mutant. Structural and mutational analysis revealed the dispensability of the usually crucial conserved motif N3 (block B) histidine as an obvious peculiar property. Unexpectedly, we identified a previously unnoticed histidine in hydrogen-bond forming distance to the catalytic serine 1 as critical for splicing. This histidine has been overlooked so far in multiple sequence alignments and is highly conserved only in cysteine-independent inteins as a part of a newly discovered motif NX. The motif NX histidine is thus likely of general importance to the specialized environment in the active site required in this intein subgroup. Together, our study advances the toolbox as well as the structural and mechanistic understanding of cysteine-less inteins.

4.
J Struct Biol ; 214(1): 107829, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34974142

RESUMO

In plant chloroplasts, thiol regulation is driven by two systems. One relies on the activity of thioredoxins through their light dependent reduction by ferredoxin via a ferredoxin-thioredoxin reductase (FTR). In the other system, a NADPH-dependent redox regulation is driven by a NADPH-thioredoxin reductase C (NTRC). While the thioredoxin system has been deeply studied, a more thorough understanding of the function of this plant specific NTRC is desirable. NTRC is a single polypeptide harbouring a thioredoxin domain (Trx) at the C-terminus of a NADPH-dependent Thioredoxin reductase (TrxR). To provide functional and structural insights, we studied the crystal structure of the TrxR domain of the NTRC from Chlamydomonas reinhardtii (CrNTRC, Cre01.g054150.t1.2) and its Cys136Ser (C136S) mutant, which is characterized by the mutation of the resolving cysteine in the active site of the TrxR domain. Furthermore, we confirmed the role of NTRC as electron donor for 2-Cys peroxiredoxin (PRX) also in C. reinhardtii. The structural data of TrxR were employed to develop a scheme of action which addresses electron transfer between TrxR and Trx of NTRC and between NTRC and its substrates.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas reinhardtii , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , NADP , Oxirredução , Oxirredutases/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo
5.
Chembiochem ; 23(1): e202100437, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34606675

RESUMO

Methylation and demethylation of DNA, RNA and proteins constitutes a major regulatory mechanism in epigenetic processes. Investigations would benefit from the ability to install photo-cleavable groups at methyltransferase target sites that block interactions with reader proteins until removed by non-damaging light in the visible spectrum. Engineered methionine adenosyltransferases (MATs) have been exploited in cascade reactions with methyltransferases (MTases) to modify biomolecules with non-natural groups, including first evidence for accepting photo-cleavable groups. We show that an engineered MAT from Methanocaldococcus jannaschii (PC-MjMAT) is 308-fold more efficient at converting ortho-nitrobenzyl-(ONB)-homocysteine than the wildtype enzyme. PC-MjMAT is active over a broad range of temperatures and compatible with MTases from mesophilic organisms. We solved the crystal structures of wildtype and PC-MjMAT in complex with AdoONB and a red-shifted derivative thereof. These structures reveal that aromatic stacking interactions within the ligands are key to accommodating the photocaging groups in PC-MjMAT. The enlargement of the binding pocket eliminates steric clashes to enable AdoMet analogue binding. Importantly, PC-MjMAT exhibits remarkable activity on methionine analogues with red-shifted ONB-derivatives enabling photo-deprotection of modified DNA by visible light.


Assuntos
DNA/química , Luz , Metionina Adenosiltransferase/química , RNA/química , DNA/genética , DNA/metabolismo , Methanocaldococcus/enzimologia , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Estrutura Molecular , Processos Fotoquímicos , Engenharia de Proteínas , RNA/genética , RNA/metabolismo
6.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974911

RESUMO

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Assuntos
Chaetomium , Proteínas Fúngicas , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferase , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismo
7.
Chembiochem ; 22(2): 364-373, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32813312

RESUMO

Split inteins are indispensable tools for protein engineering because their ligation and cleavage reactions enable unique modifications of the polypeptide backbone. Three different classes of inteins have been identified according to the nature of the covalent intermediates resulting from the acyl rearrangements in the multistep protein-splicing pathway. Class 3 inteins employ a characteristic internal cysteine for a branched thioester intermediate. A bioinformatic database search of non-redundant protein sequences revealed the absence of split variants in 1701 class 3 inteins. We have discovered the first reported split class 3 intein in a metagenomics data set and report its biochemical, mechanistic and structural analysis. The AceL NrdHF intein exhibits low sequence conservation with other inteins and marked deviations in residues at conserved key positions, including a variation of the typical class-3 WCT triplet motif. Nevertheless, functional analysis confirmed the class 3 mechanism of the intein and revealed excellent splicing yields within a few minutes over a wide range of conditions and with barely detectable cleavage side reactions. A high-resolution crystal structure of the AceL NrdHF precursor and a mutagenesis study explained the importance and roles of several residues at the key positions. Tolerated substitutions in the flanking extein residues and a high affinity between the split intein fragments further underline the intein's future potential as a ligation tool.


Assuntos
Proteínas/química , Biologia Computacional , Inteínas , Modelos Moleculares , Conformação Proteica , Processamento de Proteína
8.
Angew Chem Int Ed Engl ; 60(1): 480-485, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33017502

RESUMO

Methylation and demethylation of DNA, RNA and proteins has emerged as a major regulatory mechanism. Studying the function of these modifications would benefit from tools for their site-specific inhibition and timed removal. S-Adenosyl-L-methionine (AdoMet) analogs in combination with methyltransferases (MTases) have proven useful to map or block and release MTase target sites, however their enzymatic generation has been limited to aliphatic groups at the sulfur atom. We engineered a SAM synthetase from Cryptosporidium hominis (PC-ChMAT) for efficient generation of AdoMet analogs with photocaging groups that are not accepted by any WT MAT reported to date. The crystal structure of PC-ChMAT at 1.87 Šrevealed how the photocaged AdoMet analog is accommodated and guided engineering of a thermostable MAT from Methanocaldococcus jannaschii. PC-MATs were compatible with DNA- and RNA-MTases, enabling sequence-specific modification ("writing") of plasmid DNA and light-triggered removal ("erasing").


Assuntos
Metilases de Modificação do DNA/química , Engenharia de Proteínas/métodos , S-Adenosilmetionina/síntese química , DNA/química , Humanos
9.
Cancer Cell ; 38(2): 198-211.e8, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32559497

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is driven by co-existing mutations in KRAS and TP53. However, how these mutations collaborate to promote this cancer is unknown. Here, we uncover sequence-specific changes in RNA splicing enforced by mutant p53 which enhance KRAS activity. Mutant p53 increases expression of splicing regulator hnRNPK to promote inclusion of cytosine-rich exons within GTPase-activating proteins (GAPs), negative regulators of RAS family members. Mutant p53-enforced GAP isoforms lose cell membrane association, leading to heightened KRAS activity. Preventing cytosine-rich exon inclusion in mutant KRAS/p53 PDACs decreases tumor growth. Moreover, mutant p53 PDACs are sensitized to inhibition of splicing via spliceosome inhibitors. These data provide insight into co-enrichment of KRAS and p53 mutations and therapeutics targeting this mechanism in PDAC.


Assuntos
Carcinoma Ductal Pancreático/genética , Mutação , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Splicing de RNA , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
10.
Structure ; 28(8): 933-942.e4, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502382

RESUMO

The TSC complex is the cognate GTPase-activating protein (GAP) for the small GTPase Rheb and a crucial regulator of the mechanistic target of rapamycin complex 1 (mTORC1). Mutations in the TSC1 and TSC2 subunits of the complex cause tuberous sclerosis complex (TSC). We present the crystal structure of the catalytic asparagine-thumb GAP domain of TSC2. A model of the TSC2-Rheb complex and molecular dynamics simulations suggest that TSC2 Asn1643 and Rheb Tyr35 are key active site residues, while Rheb Arg15 and Asp65, previously proposed as catalytic residues, contribute to the TSC2-Rheb interface and indirectly aid catalysis. The TSC2 GAP domain is further stabilized by interactions with other TSC2 domains. We characterize TSC2 variants that partially affect TSC2 functionality and are associated with atypical symptoms in patients, suggesting that mutations in TSC1 and TSC2 might predispose to neurological and vascular disorders without fulfilling the clinical criteria for TSC.


Assuntos
Domínio Catalítico , Mutação de Sentido Incorreto , Proteína 2 do Complexo Esclerose Tuberosa/química , Esclerose Tuberosa/genética , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
11.
Elife ; 92020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32391792

RESUMO

Endosomes and lysosomes harbor Rab5 and Rab7 on their surface as key proteins involved in their identity, biogenesis, and fusion. Rab activation requires a guanine nucleotide exchange factor (GEF), which is Mon1-Ccz1 for Rab7. During endosome maturation, Rab5 is replaced by Rab7, though the underlying mechanism remains poorly understood. Here, we identify the molecular determinants for Rab conversion in vivo and in vitro, and reconstitute Rab7 activation with yeast and metazoan proteins. We show (i) that Mon1-Ccz1 is an effector of Rab5, (ii) that membrane-bound Rab5 is the key factor to directly promote Mon1-Ccz1 dependent Rab7 activation and Rab7-dependent membrane fusion, and (iii) that this process is regulated in yeast by the casein kinase Yck3, which phosphorylates Mon1 and blocks Rab5 binding. Our study thus uncovers the minimal feed-forward machinery of the endosomal Rab cascade and a novel regulatory mechanism controlling this pathway.


Assuntos
Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Caseína Quinase I/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Lipossomos/metabolismo , Fusão de Membrana , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ligação Proteica , Prenilação de Proteína , Células Sf9 , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
12.
Front Chem ; 5: 73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075625

RESUMO

Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomally synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study, a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target for the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible functional modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.

13.
J Biol Chem ; 291(38): 20008-20, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27493206

RESUMO

Tuberous sclerosis complex (TSC) is caused by mutations in the TSC1 and TSC2 tumor suppressor genes. The gene products hamartin and tuberin form the TSC complex that acts as GTPase-activating protein for Rheb and negatively regulates the mammalian target of rapamycin complex 1 (mTORC1). Tuberin contains a RapGAP homology domain responsible for inactivation of Rheb, but functions of other protein domains remain elusive. Here we show that the TSC2 N terminus interacts with the TSC1 C terminus to mediate complex formation. The structure of the TSC2 N-terminal domain from Chaetomium thermophilum and a homology model of the human tuberin N terminus are presented. We characterize the molecular requirements for TSC1-TSC2 interactions and analyze pathological point mutations in tuberin. Many mutations are structural and produce improperly folded protein, explaining their effect in pathology, but we identify one point mutant that abrogates complex formation without affecting protein structure. We provide the first structural information on TSC2/tuberin with novel insight into the molecular function.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor/química , Chaetomium/química , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Domínios Proteicos , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Homologia Estrutural de Proteína , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Mol Biol Cell ; 22(21): 4150-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21900493

RESUMO

Sec1/Munc18 proteins play a fundamental role in multiple steps of intracellular membrane trafficking. Dual functions have been attributed to Munc18-1: it can act as a chaperone when it interacts with monomeric syntaxin 1A, and it can activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion when it binds to SNARE complexes. Although both modes of binding involve the central cavity of Munc18-1, their precise molecular mechanisms of action are not fully understood. In this paper, we describe a novel Munc18-1 mutant in the central cavity that showed a reduced interaction with syntaxin 1A and impaired chaperone function, but still bound to assembled SNARE complexes and promoted liposome fusion and secretion in neuroendocrine cells. Soluble syntaxin 1A H3 domain partially blocks Munc18-1 activation of liposome fusion by occupying the Munc18-1 central cavity. Our findings lead us to propose a transition model between the two distinct binding modes by which Munc18 can control and assist in SNARE-complex assembly during neurotransmitter release.


Assuntos
Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Sintaxina 1/metabolismo , Animais , Calorimetria , Membrana Celular/metabolismo , Células HeLa , Hormônio do Crescimento Humano/metabolismo , Humanos , Lipossomos/metabolismo , Camundongos , Microscopia de Fluorescência , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Munc18/genética , Células Neuroendócrinas/metabolismo , Células PC12 , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Ratos , Proteínas Recombinantes/metabolismo , Termodinâmica , Titulometria
15.
Cell Mol Life Sci ; 67(15): 2653-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20372964

RESUMO

Bet3, a transport protein particle component involved in vesicular trafficking, contains a hydrophobic tunnel occupied by a fatty acid linked to cysteine 68. We reported that Bet3 has a unique self-palmitoylating activity. Here we show that mutation of arginine 67 reduced self-palmitoylation of Bet3, but the effect was compensated by increasing the pH. Thus, arginine helps to deprotonate cysteine such that it could function as a nucleophile in the acylation reaction which is supported by the structural analysis of non-acylated Bet3. Using fluorescence spectroscopy we show that long-chain acyl-CoAs bind with micromolar affinity to Bet3, whereas shorter-chain acyl-CoAs do not interact. Mutants with a deleted acylation site or a blocked tunnel bind to Pal-CoA, only the latter with slightly reduced affinity. Bet3 contains three binding sites for Pal-CoA, but their number was reduced to two in the mutant with an obstructed tunnel, indicating that Bet3 contains binding sites on its surface.


Assuntos
Proteínas de Transporte/metabolismo , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Acilação , Arginina/genética , Arginina/metabolismo , Sítios de Ligação/genética , Proteínas de Transporte/genética , Cisteína/genética , Cisteína/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Lipoilação
16.
Nucleic Acids Res ; 35(6): e43, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17311810

RESUMO

A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five 'pQLink' vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells.


Assuntos
Clonagem Molecular/métodos , Vetores Genéticos/química , Proteínas Recombinantes/biossíntese , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Escherichia coli/genética , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/isolamento & purificação , Proteínas de Transporte Vesicular/metabolismo
17.
Proc Natl Acad Sci U S A ; 103(34): 12701-6, 2006 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16908848

RESUMO

Bet3 is a component of the transport protein particle complex involved in vesicular trafficking to and through the Golgi complex. X-ray structural analysis of human and mouse Bet3 revealed a hydrophobic tunnel inside the protein, which is occupied by a fatty acid linked to cysteine-68. We show here that Bet3 has strong self-palmitoylating activity. Incubation of purified Bet3 with [3H]palmitoyl-CoA (Pal-CoA) leads to a rapid and stoichiometric attachment of fatty acids to cysteine-68. Bet3 has an intrinsic affinity for Pal-CoA, and the palmitoylation reaction occurs at physiological pH values and Pal-CoA concentrations. Moreover, Bet3 is also efficiently palmitoylated at cysteine-68 inside vertebrate cells. Palmitoylation can occur late after Bet3 synthesis, but once the fatty acids are bound they are not removed, not even by disassembly of the Golgi complex. Narrowing the hydrophobic tunnel by exchange of alanine-82 with bulkier amino acids inhibits palmitoylation, both in vitro and inside cells, indicating that the fatty acid must insert into the tunnel for stable attachment. Finally, we show that palmitoylation of Bet3 plays a structural role. CD spectroscopy reveals that chemically deacylated Bet3 has a reduced melting temperature. As a consequence of its structural defect nonacylated Bet3 does not bind to TPC6, a further subunit of the transport protein particle complex, and is degraded inside cells.


Assuntos
Ácido Palmítico/química , Ácido Palmítico/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Animais , Arginina/genética , Arginina/metabolismo , Linhagem Celular , Cricetinae , Cisteína/genética , Cisteína/metabolismo , Humanos , Modelos Moleculares , Palmitoil Coenzima A/metabolismo , Ligação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , Temperatura , Proteínas de Transporte Vesicular/genética
18.
J Mol Biol ; 361(1): 22-32, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16828797

RESUMO

The transport protein particle (TRAPP) complexes are involved in the tethering process at different trafficking steps of vesicle transport. We here present the crystal structure of a human Bet3-Tpc6B heterodimer, which represents a core sub-complex in the assembly of TRAPP. We describe a conserved patch of Tpc6 with uncharged pockets, forming a putative interaction interface for an anchoring moiety at the Golgi. The structural and functional comparison of the two paralogs Tpc6A and Tpc6B, only found in some organisms, indicates redundancy and added complexity of TRAPP architecture and function. Both iso-complexes, Bet3-Tpc6A and Bet3-Tpc6B, are able to recruit Mum2, a further TRAPP subunit, and we identify the alpha1-alpha2 loop regions as a binding site for Mum2. Our study reveals similar stability of the iso-complexes and similar expression patterns of the tpc6 variants in different mouse organs. These findings raise the possibility that the Tpc6 paralogs might contribute to the formation of two distinct TRAPP complexes that differ in function.


Assuntos
Antígenos de Neoplasias/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
19.
EMBO J ; 24(5): 875-84, 2005 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-15692564

RESUMO

BET3 is a component of TRAPP, a complex involved in the tethering of transport vesicles to the cis-Golgi membrane. The crystal structure of human BET3 has been determined to 1.55-A resolution. BET3 adopts an alpha/beta-plait fold and forms dimers in the crystal and in solution, which predetermines the architecture of TRAPP where subunits are present in equimolar stoichiometry. A hydrophobic pocket within BET3 buries a palmitate bound through a thioester linkage to cysteine 68. BET3 and yeast Bet3p are palmitoylated in recombinant yeast cells, the mutant proteins BET3 C68S and Bet3p C80S remain unmodified. Both BET3 and BET3 C68S are found in membrane and cytosolic fractions of these cells; in membrane extractions, they behave like tightly membrane-associated proteins. In a deletion strain, both Bet3p and Bet3p C80S rescue cell viability. Thus, palmitoylation is neither required for viability nor sufficient for membrane association of BET3, which may depend on protein-protein contacts within TRAPP or additional, yet unidentified modifications of BET3. A conformational change may facilitate palmitoyl extrusion from BET3 and allow the fatty acid chain to engage in intermolecular hydrophobic interactions.


Assuntos
Proteínas de Membrana/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Humanos , Técnicas In Vitro , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Ácido Palmítico/química , Conformação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA