Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Total Environ ; 857(Pt 3): 159454, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36252658

RESUMO

The present study assessed the ready biodegradability of the prodrug cyclophosphamide (CPA) and its stable human metabolites in the closed bottle test (CBT). The results of the CBT showed that only the main human metabolite, carboxyphosphamide (CXP), was biodegradable to a certain extent (23 ± 2.4 % ThODNH3). All other metabolites showed neither biodegradation under these conditions nor were any toxic effects on the inoculum observed. Yet, HRMSn results revealed partial primary elimination of all human metabolites and formation of 25 new transformation products. Abiotic degradation via SNi and SN2 reactions was proposed as the main degradation pathway during the CBT. The main degradation products were assigned as 3-(2-chloroethyl)oxazolidin-2-one (COAZ), cytotoxic N-2-chloroethylaziridine (CEZ) and nor­nitrogen mustard (NNM), an analogue of the chemical warfare agent HN2. While the acute ecotoxicity of the detected products is widely unknown, many have already been reported in medical literature to be either mutagenic, genotoxic, cytotoxic or carcinogenic and may therefore cause a greater risk than their precursors. QSAR models predicted that 16 of them are mutagenic and genotoxic, thus classifying the majority of the chemicals as potential environmental hazards. The central intermediates during the degradation process were proposed as CEZ and its corresponding aziridinium ion. However, other degradation products may occur depending on the type and strength of nucleophiles present in the matrices. Overall, the results demonstrated the importance to include human metabolites in the evaluation of the environmental fate of pharmaceuticals and their risk assessment especially when investigating prodrugs. The results underline the importance of identifying possible degradation products of metabolites, as they can be more toxic than related parent compounds and metabolites and can cause a greater risk to the environment and humans.


Assuntos
Antineoplásicos , Humanos , Ciclofosfamida/toxicidade , Ciclofosfamida/química , Biodegradação Ambiental
2.
Nutrients ; 13(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808527

RESUMO

Lipids are of interest for the targeted modification of oral bioadhesion processes. Therefore, the sustainable effects of linseed oil on the composition and ultrastructure of the in situ pellicle were investigated. Unlike saliva, linseed oil contains linolenic acid (18:3), which served as a marker for lipid accumulation. Individual splints with bovine enamel slabs were worn by five subjects. After 1 min of pellicle formation, rinses were performed with linseed oil for 10 min, and the slabs' oral exposure was continued for up to 2 or 8 h. Gas chromatography coupled with electron impact ionization mass spectrometry (GC-EI/MS) was used to characterize the fatty acid composition of the pellicle samples. Transmission electron microscopy was performed to analyze the ultrastructure. Extensive accumulation of linolenic acid was recorded in the samples of all subjects 2 h after the rinse and considerable amounts persisted after 8 h. The ultrastructure of the 2 h pellicle was less electron-dense and contained lipid vesicles when compared with controls. After 8 h, no apparent ultrastructural effects were visible. Linolenic acid is an excellent marker for the investigation of fatty acid accumulation in the pellicle. New preventive strategies could benefit from the accumulation of lipid components in the pellicle.


Assuntos
Biofilmes , Óleo de Semente do Linho/farmacologia , Lipídeos/química , Antissépticos Bucais/farmacologia , Adulto , Animais , Aderência Bacteriana/efeitos dos fármacos , Bovinos , Ácidos Graxos/análise , Humanos , Microscopia Eletrônica de Transmissão , Saliva/química , Adulto Jovem , Ácido alfa-Linolênico/metabolismo
3.
Environ Int ; 137: 105533, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32113087

RESUMO

In order to conduct a fast and comprehensive toxicity screening of pesticide transformation products (TPs), this study used a tiered approach by a combination of in silico and experimental methods to determine the probability to be of relevance for risk assessment. The six pesticides Boscalid, Penconazole, Diuron, Terbutryn, Octhilinone (OIT), and Mecoprop were used as model compounds. Identification of corresponding environmental known and unknown TPs were done by literature analysis and photolysis experiments in combination. Aquatic solutions of the pesticides were photolysed to generate TPs which can be expected in the aquatic environment. The resulting mixtures were screened for TPs by high resolution LC-MS/MS. The herein developed approach was conducted at three different tiers: Literature review and in silico methods were used to predict exemplary the environmental bacterial toxicity and the genotoxicity of every single TP at tier I. In case of indications to be toxic, experiments at tier II were applied. Hereby, the photolytic mixtures containing parent compound and TPs were used for the consecutive toxicity test. Microtox assay for the parent compounds and the photolytic mixture was conducted to determine the acute and chronic toxicity and the growth inhibition of V. fischeri. Umu-tests were conducted to determine primary DNA damage. At tier III, single substance standards were used to conduct toxicity tests in case of toxic indication by previous tiers and availability of analytical standard. Identification of TPs revealed 45 known environmental TPs that originated from the six pesticides. The number of substances that need to be assessed was therefore more than sevenfold. By the tiered approach, it was possible to assess toxicological effects on environmental bacteria of 94% of the selected TPs. For 20% we found strong evidence to be toxic to environmental bacteria, as they were assessed at least at two tiers. For further 44% of the TPs we found slight evidence, as they could be assessed at one tier. Contrary, this approach turned out to be unsuitable to assess genotoxic effects of TPs neither by in silico tools nor by experiments. The number of substances that could probably pose a risk onto environment was quadrupled in comparison to the consideration of solely the parent compounds. Thus, this study demonstrates that the conducted screening approach allows for easy and fast identification of environmental relevant TPs. However, the study presented was a very first screening. Its applicability domain needs to be assessed further. For this purpose as a very next step the approach suggested here should be verified by applying additional endpoints and including additional parent compounds.


Assuntos
Ecotoxicologia , Praguicidas , Poluentes Químicos da Água , Cromatografia Líquida , Dano ao DNA , Praguicidas/toxicidade , Fotólise , Espectrometria de Massas em Tandem , Vibrio , Poluentes Químicos da Água/toxicidade
4.
Regul Toxicol Pharmacol ; 96: 1-17, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29678766

RESUMO

The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.


Assuntos
Simulação por Computador , Testes de Toxicidade/métodos , Toxicologia/métodos , Animais , Humanos
5.
Environ Pollut ; 208(Pt B): 467-76, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26566018

RESUMO

The presence of pharmaceuticals in the environment has triggered concern among the general population and received considerable attention from the scientific community in recent years. However, only a few publications have focused on anticancer drugs, a class of pharmaceuticals that can exhibit cytotoxic, genotoxic, mutagenic, carcinogenic and teratogenic effects. The present study investigated the photodegradation, biodegradation, bacterial toxicity, mutagenicity and genotoxicity of cyclophosphamide (CP) and 5-fluorouracil (5-FU). The photodegradation experiments were performed at a neutral to slight pH range (7-7.8) using two different lamps (medium-pressure mercury lamp and a xenon lamp). The primary elimination of the parent compounds was monitored by means of liquid chromatography tandem mass spectrometry (LC-IT-MS/MS). NPOC (non-purgeable organic carbon) analyses were carried out in order to assess mineralization rates. The Closed Bottle Test (CBT) was used to assess ready biodegradability. A new method using Vibrio fischeri was adopted to evaluate toxicity. CP was not degraded by any lamp, whereas 5-FU was completely eliminated by irradiation with the mercury lamp but only partially by the Xe lamp. No mineralization was observed for the experiments performed with the Xe lamp, and a NPOC removal of only 18% was registered for 5-FU after 256 min using the UV lamp. Not one of the parent compounds was readily biodegradable in the CBT. Photo transformation products (PTPs) resulting from photolysis were neither better biodegradable nor less toxic than the parent compound 5-FU. In contrast, the results of the tests carried out with the UV lamp indicated that more biodegradable and non-toxic PTPs of 5-FU were generated. Three PTPs were formed during the photodegradation experiments and were identified. The results of the in silico QSAR predictions showed positive mutagenic and genotoxic alerts for 5-FU, whereas only one of the formed PTPs presented positive alerts for the genotoxicity endpoint.


Assuntos
Aliivibrio fischeri , Antineoplásicos , Ciclofosfamida , Fluoruracila , Luz Solar , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/efeitos da radiação , Antineoplásicos/toxicidade , Biodegradação Ambiental , Cromatografia Líquida , Ciclofosfamida/química , Ciclofosfamida/metabolismo , Ciclofosfamida/efeitos da radiação , Ciclofosfamida/toxicidade , Fluoruracila/química , Fluoruracila/metabolismo , Fluoruracila/efeitos da radiação , Fluoruracila/toxicidade , Imunossupressores/química , Imunossupressores/metabolismo , Imunossupressores/efeitos da radiação , Imunossupressores/toxicidade , Fotólise , Relação Quantitativa Estrutura-Atividade , Espectrometria de Massas em Tandem
6.
Environ Sci Pollut Res Int ; 23(15): 14791-804, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25475615

RESUMO

Antineoplastic drugs are important in the treatment of cancer. Some interact directly with the deoxyribonucleic acid (DNA) and are of utmost importance in terms of risk. As highly active compounds, antineoplastics and their metabolites are largely excreted into wastewater and are found in the aquatic environment up to the lower µg/L range. Their predicted environmental concentrations are often below the action limit set in the European Medicines Agency (EMA) guideline. An in-depth risk assessment regarding their presence and effects in the aquatic environment is often not performed, and there is a lack of knowledge. This study considered whether there is an underestimation of possible risks associated with the presence of antineoplastic drugs with regard to trigger value stated in the EMA and FDA guidelines. In a balance, we identified a total of 102 active pharmaceutical ingredients of the ATC-group L01 (antineoplastic agents), which are environmentally relevant. In Germany, 20.7 t of antineoplastic agents was consumed in 2012. The share of drugs with DNA-damaging properties increased within the last 6 years from 24 up to 67 %. Solely, capecitabine and 5-fluorouracil amount together 8 t-which corresponds to 39 % of the total antineoplastic consumption. Around 80 % of the total mass consumed could be attributed to prescriptions issued by office-based practitioners and is mostly excreted at home. Based on the different mode of actions, a case-by-case evaluation of the risk connected to their presence in the environment is recommended. DNA-damaging drugs should be assessed independently as no action limit can be assumed.


Assuntos
Antineoplásicos/toxicidade , Exposição Ambiental , Poluentes Ambientais/toxicidade , Dano ao DNA , Monitoramento Ambiental , Alemanha , Humanos , Medição de Risco
7.
Chemosphere ; 141: 290-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26298026

RESUMO

Anti-cancer drugs are discussed as high risk substances in regard to human health and considered as problematic for the environment. They are of potential environmental relevance due to their poor biodegradability and toxicological properties. Methotrexate (MTX) is an antimetabolite that was introduced in the pharmaceutical market in the 40's and still today is one of the most consumed cytotoxic compounds around the world. In the present study MTX was only partially biodegraded in the closed bottle test (CBT). Therefore, it was submitted to three different advanced oxidation processes (AOPs): UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The irradiation was carried out with a Hg medium-pressure lamp during 256min whereas the analytical monitoring was done through LC-UV-MS/MS and DOC analysis. MTX was easily removed in all the irradiation experiments, while the highest mineralization values and rates were achieved by the UV/Fe(2+)/H2O2 treatment. The lowest resulted from the UV/H2O2 reactions. The UV/H2O2 treatment resulted in little biodegradable transformation products (TPs). However, the same treatment resulted in a reduction of the toxicity of MTX by forming less toxic TPs. Analysis by LC-UV-MS/MS revealed the existence of nine TPs formed during the photo-catalytic treatments. The pH of the solutions decreased from 6.4 (t 0min) to 5.15 in the UV/H2O2 and from 6.4 (t 0min) to 5.9 in the UV/TiO2 at the end of the experiments. The initial pH of the UV/Fe(2+)/H2O2 experiments was adjusted to 5 and after the addition of H2O2 the pH decreased to around 3 and remained in this range until the end of the treatments.


Assuntos
Antineoplásicos/análise , Metotrexato/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Aerobiose , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/crescimento & desenvolvimento , Antineoplásicos/química , Antineoplásicos/toxicidade , Biodegradação Ambiental , Cromatografia Líquida , Peróxido de Hidrogênio/química , Metotrexato/química , Metotrexato/toxicidade , Oxirredução , Photobacterium/efeitos dos fármacos , Photobacterium/crescimento & desenvolvimento , Fotólise , Espectrometria de Massas em Tandem , Titânio/química , Testes de Toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
8.
Environ Sci Pollut Res Int ; 22(22): 18017-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26169816

RESUMO

In the present study, in vitro toxicity as well as biopersistence and photopersistence of four artificial sweeteners (acesulfame, cyclamate, saccharine, and sucralose) and five antibiotics (levofloxacin, lincomycin, linezolid, marbofloxacin, and sarafloxacin) and of their phototransformation products (PTPs) were investigated. Furthermore, antibiotic activity was evaluated after UV irradiation and after exposure to inocula of a sewage treatment plant. The study reveals that most of the tested compounds and their PTPs were neither readily nor inherently biodegradable in the Organisation for Economic Co-operation and Development (OECD)-biodegradability tests. The study further demonstrates that PTPs are formed upon irradiation with an Hg lamp (UV light) and, to a lesser extent, upon irradiation with a Xe lamp (mimics sunlight). Comparing the nonirradiated with the corresponding irradiated solutions, a higher chronic toxicity against bacteria was found for the irradiated solutions of linezolid. Neither cytotoxicity nor genotoxicity was found in human cervical (HeLa) and liver (Hep-G2) cells for any of the investigated compounds or their PTPs. Antimicrobial activity of the tested fluoroquinolones was reduced after UV treatment, but it was not reduced after a 28-day exposure to inocula of a sewage treatment plant. This comparative study shows that PTPs can be formed as a result of UV treatment. The study further demonstrated that UV irradiation can be effective in reducing the antimicrobial activity of antibiotics, and consequently may help to reduce antimicrobial resistance in wastewaters. Nevertheless, the study also highlights that some PTPs may exhibit a higher ecotoxicity than the respective parent compounds. Consequently, UV treatment does not transform all micropollutants into harmless compounds and may not be a large-scale effluent treatment option.


Assuntos
Antibacterianos/análise , Antibacterianos/toxicidade , Processos Fotoquímicos , Edulcorantes/análise , Edulcorantes/toxicidade , Água/química , Antibacterianos/química , Antibacterianos/metabolismo , Biodegradação Ambiental , Células HeLa , Células Hep G2 , Humanos , Esgotos/química , Edulcorantes/química , Edulcorantes/metabolismo , Raios Ultravioleta , Gerenciamento de Resíduos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
9.
Chemosphere ; 135: 403-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26002047

RESUMO

Anti-cancer drugs are compounds that are of high environmental relevance because of their lack of specific mode of action. They can be extremely harmful to living organisms even at low concentrations. The present study evaluated the toxic effects of four frequently used anti-cancer drugs against plant seedlings, namely Cyclophosphamide (CP), Methotrexate (MTX), 5-Fluorouracil (5-FU) and Imatinib (IM). The phytotoxicity experiments were performed with Lactuca sativa seedlings whereas cytotoxicity, genotoxicity and mutagenicity investigations were performed with the well-established Allium cepa assays. MTX was the most phytotoxic compound, followed by 5-FU, CP and IM. Significant differences in the Mitotic Indexes (MI) were observed in three of the studied compounds (MTX, 5-FU and CP), indicating potential cytotoxic activity of these substances. Chromosome aberrations were registered in cells that were exposed to 5-FU, CP and IM. All the four compounds caused the formation of micronucleated cells indicating mutagenic potential. Besides, the assays performed with MTX samples presented a high number of cell apoptosis (cell death). Although it is unlikely that the pharmaceuticals concentrations measured in the environment could cause lethal effects in plants, the obtained results indicate that these compounds may affect the growth and normal development of these plants. So, both tests can constitute important tools for a fast screening of environmental contamination e.g. in the context of the reuse of treated wastewater and biosolids of agricultural purpose.


Assuntos
Irrigação Agrícola/métodos , Antineoplásicos/toxicidade , Plantas/efeitos dos fármacos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Bioensaio , Ciclofosfamida , Fluoruracila , Mutagênicos/toxicidade , Cebolas/efeitos dos fármacos , Esgotos
10.
Water Res ; 72: 75-126, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25600206

RESUMO

Pharmaceuticals may undergo transformation into new products during almost all possible processes along their life-cycle. This could either take place in the natural water environment and/or during water treatment processes. Numerous studies that address the issue of such transformation products (TPs) have been published, describing selected aspects of TPs in the environment and their formation within effluent and water treatment processes. In order to exemplify the number and quality of information published on TPs, we selected 21 active pharmaceutical ingredients from the groups of antibiotics and antineoplastics, and assessed the knowledge about their TPs that has been published until the end of May 2012. The goal of this work was to demonstrate, that the quality of data on pharmaceutical TPs greatly differs in terms of the availability of chemical structures for each TP, rather than to provide an exhaustive database of available TPs. The aim was to point out the challenge going along with so many TPs formed under different treatment and environmental conditions. An extensive review in the form of a table showing the existing data on 158 TPs for 15 compounds, out of 21 investigated, was presented. Numerous TPs are the result of different treatments and environmental processes. However, also numerous different TPs may be formed within only one type of treatment, applied under sometimes even very similar treatment conditions and treatments times. In general, the growing number of elucidated TPs is rationalized by ineffective removal treatments. Our results demonstrate a severe risk of drowning in much unrelated and non-assessable data, both from a scientific and from a technical treatment-related point of view. Therefore, limiting the input of pharmaceuticals into effluents as well as improving their (bio) degradability and elimination behavior, instead of only relying on advanced effluent treatments, is urgently needed. Solutions that focus on this "beginning of the pipe" approach should minimize the adverse effects of parent compounds by reducing and formation of TPs and their entrance into the natural environment.


Assuntos
Antibacterianos/análise , Citostáticos/análise , Meio Ambiente , Eliminação de Resíduos Líquidos , Ciclo Hidrológico , Purificação da Água/métodos , Abastecimento de Água , Antibacterianos/química , Citostáticos/química , Preparações Farmacêuticas/análise
11.
Chemosphere ; 120: 538-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25303738

RESUMO

Anticancer drugs are harmful substances that can have carcinogenic, mutagenic, teratogenic, genotoxic, and cytotoxic effects even at low concentrations. More than 50 years after its introduction, the alkylating agent cyclophosphamide (CP) is still one of the most consumed anticancer drug worldwide. CP has been detected in water bodies in several studies and is known as being persistent in the aquatic environment. As the traditional water and wastewater treatment technologies are not able to remove CP from the water, different treatment options such as advanced oxidation processes (AOPs) are under discussion to eliminate these compounds. The present study investigated the degradation of CP by three different AOPs: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The light source was a Hg medium-pressure lamp. Prescreening tests were carried out and afterwards experiments based on the optimized conditions were performed. The primary elimination of the parent compounds and the detection of transformation products (TPs) were monitored with LC-UV-MS/MS analysis, whereas the degree of mineralization was monitored by measuring the dissolved organic carbon (DOC). Ecotoxicological assays were carried out with the luminescent bacteria Vibrio fischeri. CP was completely degraded in all treatments and UV/Fe(2+)/H2O2 was the fastest process, followed by UV/H2O2 and UV/TiO2. All the reactions obeyed pseudo-first order kinetics. Considering the mineralization UV/Fe(2+)/H2O2 and UV/TiO2 were the most efficient process with mineralization degrees higher than 85%, whereas UV/H2O2 achieved 72.5% of DOC removal. Five transformation products were formed during the reactions and identified. None of them showed significant toxicity against V. fischeri.


Assuntos
Antineoplásicos Alquilantes/química , Ciclofosfamida/química , Peróxido de Hidrogênio , Ferro , Titânio , Raios Ultravioleta , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/efeitos da radiação , Ferro/química , Ferro/efeitos da radiação , Cinética , Oxirredução , Fotólise , Espectrometria de Massas em Tandem , Titânio/química , Titânio/efeitos da radiação , Águas Residuárias , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-24556194

RESUMO

Anti-cancer drugs are chemotherapeutic agents that are designed to kill or reduce proliferating cells. Often times, they interfere directly or indirectly with the cell's deoxyribonucleic acid (DNA). Some of these drugs can be detected in the ng/L concentration range in the aquatic environment and have the potential to be very persistent. Environmental risk assessment is available for only a few anti-cancer drugs, derived mainly from predicted data and excluding information on their metabolites and transformation products (TPs). Notably, there is no defined strategy for genotoxicity risk assessment of anti-cancer drugs, their metabolites and TPs in the environment. In fact, the presence of anti-cancer drugs in hospital and municipal wastewaters has not been clearly related to the genotoxic nature of these wastewaters. The few available studies that have sought to investigate the genotoxicity of mixtures derived from treating anti-cancer drugs prior to disposal seem to share the commonality of coupling analytical methods to measure concentration and genotoxic bioassays, namely the Ames test to monitor inactivation. Such limited studies on the environmental fate and effects of these drugs presents an area for further research work. Most importantly, there is a need to characterize the genotoxic effects of anti-cancer drugs towards aquatic organisms. Given current environmental risk assessment strategies, genotoxicity risk assessment of these drugs and their TPs would have to include a combination of appropriate analytical methods, genotoxicity bioassays, (bio) degradability and computer based prediction methods such as QSAR studies.

13.
Water Res ; 49: 11-22, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24316178

RESUMO

The fate of thalidomide (TD) was investigated after irradiation with a medium-pressure Hg-lamp. The primary elimination of TD was monitored and structures of phototransformation products (PTPs) were assessed by LC-UV-FL-MS/MS. Environmentally relevant properties of TD and its PTPs as well as hydrolysis products (HTPs) were predicted using in silico QSAR models. Mutagenicity of TD and its PTPs was investigated in the Ames microplate format (MPF) aqua assay (Xenometrix, AG). Furthermore, a modified luminescent bacteria test (kinetic luminescent bacteria test (kinetic LBT)), using the luminescent bacteria species Vibrio fischeri, was applied for the initial screening of environmental toxicity. Additionally, toxicity of phthalimide, one of the identified PTPs, was investigated separately in the kinetic LBT. The UV irradiation eliminated TD itself without complete mineralization and led to the formation of several PTPs. TD and its PTPs did not exhibit mutagenic response in the Salmonella typhimurium strains TA 98, and TA 100 with and without metabolic activation. In contrast, QSAR analysis of PTPs and HTPs provided evidence for mutagenicity, genotoxicity and carcinogenicity using additional endpoints in silico software. QSAR analysis of different ecotoxicological endpoints, such as acute toxicity towards V. fischeri, provided positive alerts for several identified PTPs and HTPs. This was partially confirmed by the results of the kinetic LBT, in which a steady increase of acute and chronic toxicity during the UV-treatment procedure was observed for the photolytic mixtures at the highest tested concentration. Moreover, the number of PTPs within the reaction mixture that might be responsible for the toxification of TD during UV-treatment was successfully narrowed down by correlating the formation kinetics of PTPs with QSAR predictions and experimental toxicity data. Beyond that, further analysis of the commercially available PTP phthalimide indicated that transformation of TD into phthalimide was not the cause for the toxification of TD during UV-treatment. These results provide a path for toxicological assessment of complex chemical mixtures and in detail show the toxic potential of TD and its PTPs as well as its HTPs. This deserves further attention as UV irradiation might not always be a green technology, because it might pose a toxicological risk for the environment in general and specifically for water compartments.


Assuntos
Processos Fotoquímicos/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Talidomida/toxicidade , Testes de Toxicidade , Cromatografia Líquida , Hidrólise/efeitos dos fármacos , Hidrólise/efeitos da radiação , Cinética , Espectrometria de Massas , Testes de Mutagenicidade , Processos Fotoquímicos/efeitos da radiação , Fotólise/efeitos dos fármacos , Talidomida/química , Fatores de Tempo , Raios Ultravioleta
14.
Sci Total Environ ; 463-464: 140-50, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792256

RESUMO

Thalidomide (TD), besides being notorious for its teratogenicity, was shown to have immunomodulating and anti-inflammatory activities. This is why recently TD became a promising drug for the treatment of different cancers and inflammatory diseases. Yet nothing is known about the environmental fate of TD, which therefore was assessed experimentally and by in silico prediction programs (quantitative structure activity relationship (QSAR) models) within this study. Photolytic degradation was tested with two different light sources (medium-pressure mercury lamp; xenon lamp) and aerobic biodegradability was investigated with two OECD tests (Closed Bottle test (CBT), Manometric Respirometry test (MRT)). An additional CBT was performed for TD samples after 16 min of UV-photolysis. The primary elimination of TD was monitored and the structures of its photo-, abiotic and biodegradation products were elucidated by HPLC-UV-Fluorescence-MS(n). Furthermore, elimination of dissolved organic carbon was monitored in the photolysis experiment. LC-MS revealed that new photolytic transformation products (TPs) were identified, among them two isomers of TD with the same molecular mass. These TPs were different to the products formed by biodegradation. The experimental findings were compared with the results obtained from the in silico prediction programs where e.g. a good correlation for TD biodegradation in the CBT was confirmed. Moreover, some of the identified TPs were also structurally predicted by the MetaPC software. These results demonstrate that TD and its TPs are not readily biodegradable and not fully mineralized by photochemical treatment. They may therefore pose a risk to the aquatic environment due to the pharmacological activity of TD and unknown properties of its TPs. The applied techniques within this study emphasize the importance of QSAR models as a tool for estimating environmental risk assessments.


Assuntos
Talidomida/química , Aerobiose , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Fotólise , Relação Quantitativa Estrutura-Atividade , Talidomida/análise , Talidomida/efeitos da radiação , Raios Ultravioleta , Água/química
15.
Odontology ; 101(2): 170-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22684585

RESUMO

The aim of the present study was to evaluate the release of monomers from three bonding systems and to correlate it with their antibacterial effect. Three bonding systems (Optibond FL(®), Xeno III(®) and Clearfil™ Protect Bond) were tested after storage in ethanol 75 % and human saliva. Twenty samples (n = 10/medium) of each bonding material were prepared and polymerized according to the manufacturers' instructions. Each sample was stored in 1 ml of the respective storage medium. The medium was renewed after 24 h, 7 days, and 28 days and was analysed by LC-MS/MS for the release of substances. Additionally, the antibacterial effect of the unpolymerized components of each bonding system and their polymerized mixture was tested using agar disc-diffusion test with Streptococcus mutans. Only HEMA was found to be released. The amount of HEMA detected in the ethanol samples was significantly higher compared to the saliva samples (p < 0.0001). The release of HEMA was as follows: Clearfil™ Protect Bond < Optibond FL(®) < Xeno III(®.) According to the agar disc-diffusion test, all materials exhibited certain antibacterial activity. The release of HEMA from all tested materials even after storing in human saliva increases the concerns about their toxicity. Their antibacterial effect seems not be due to the release of substances.


Assuntos
Antibacterianos/farmacologia , Colagem Dentária , Materiais Dentários/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem
16.
Environ Sci Pollut Res Int ; 19(5): 1719-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22161117

RESUMO

PURPOSE: Ciprofloxacin (CIP), a broad-spectrum, second-generation fluoroquinolone, has frequently been found in hospital wastewaters and effluents of sewage treatment plants. CIP is scarcely biodegradable, has toxic effects on microorganisms and is photosensitive. The aim of this study was to assess the genotoxic potential of CIP in human HepG2 liver cells during photolysis. METHODS: Photolysis of CIP was performed in aqueous solution by irradiation with an Hg lamp, and transformation products were monitored by HPLC-MS/MS and by the determination of dissolved organic carbon (DOC). The cytotoxicity and genotoxicity of CIP and of the irradiated samples were determined after 24 h of exposure using the WST-1 assay and the in vitro micronucleus (MN) test in HepG2 cells. RESULTS: The concentration of CIP decreased during photolysis, whereas the content of DOC remained unchanged. CIP and its transformation products were not cytotoxic towards HepG2 cells. A concentration-dependent increase of MN frequencies was observed for the parent compound CIP (lowest observed effect level, 1.2 µmol L(-1)). Furthermore, CIP and the irradiated samples were found to be genotoxic with a significant increase relative to the parent compound after 32 min (P < 0.05). A significant reduction of genotoxicity was found after 2 h of irradiation (P < 0.05). CONCLUSIONS: Photolytic decomposition of aqueous CIP leads to genotoxic transformation products. This proves that irradiated samples of CIP are able to exert heritable genotoxic effects on human liver cells in vitro. Therefore, photolysis as a technique for wastewater treatment needs to be evaluated in detail in further studies, not only for CIP but in general.


Assuntos
Ciprofloxacina/química , Ciprofloxacina/toxicidade , Testes para Micronúcleos , Dano ao DNA , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Fotólise , Soluções
17.
Antimicrob Agents Chemother ; 54(9): 4029-32, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20547790

RESUMO

Parallel administration of the proton pump inhibitor (PPI) esomeprazole has been shown to decrease oral bioavailability of posaconazole in healthy volunteers. We prospectively analyzed serum samples (n = 59) obtained from hematology patients (n = 27) under posaconazole prophylaxis. Patients treated concomitantly with pantoprazole had significantly lower posaconazole levels than patients without PPI treatment (median levels of 630 microg/liter versus 1,125 microg/liter, respectively). These results suggest that drug monitoring is relevant when posaconazole and pantoprazole are administered concomitantly.


Assuntos
Antifúngicos/uso terapêutico , Neoplasias Hematológicas/microbiologia , Triazóis/uso terapêutico , Adulto , Idoso , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Micoses/tratamento farmacológico , Estudos Prospectivos
19.
Environ Sci Pollut Res Int ; 17(2): 486-96, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19548016

RESUMO

BACKGROUND, AIM, AND SCOPE: Anti-tumour agents and their metabolites are largely excreted into effluent, along with other pharmaceuticals. In the past, investigations have focused on the input and analysis of pharmaceuticals in surface and ground water. The two oxazaphosphorine compounds, cyclophosphamide and ifosfamide are important cytostatic drugs used in the chemotherapy of cancer and in the treatment of autoimmune diseases. Their mechanism of action, involving metabolic activation and unspecific alkylation of nucleophilic compounds, accounts for genotoxic and carcinogenic effects described in the literature and is reason for environmental concern. The anti-tumour agents cyclophosphamide (CP) and ifosfamide (IF) were not biodegraded in biodegradation tests. They were not eliminated in municipal sewage treatment plants. Degradation by photochemically formed HO radicals may be of some relevance only in shallow, clear, and nitrate-rich water bodies but could be further exploited for elimination of these compounds by advanced oxidation processes, i.e. in a treatment of hospital waste water. Therefore, CP and IF are assumed to persist in the aquatic environment and to enter drinking water via surface water. The risk to humans from input of CP and IF into surface water is not known. MATERIALS AND METHODS: The local and regional, i.e. nationwide predicted environmental concentration (PEC(local), PEC(regional)) of CP and IF was calculated for German surface water. Both compounds were measured in hospital effluents, and in the influent and effluent of a municipal treatment plant. Additionally, published concentrations in the effluent of sewage treatment plants and surface water were used for risk assessment. Excretion rates were taken into account. For a worst-case scenario, maximum possible ingestion of CP or IF by drinking 2 L a day of unprocessed surface water over a life span of 70 years was calculated for adults. Elimination in drinking water processing was neglected, as no data is available. This intake was compared with intake during anti-cancer treatment. RESULTS AND DISCUSSION: Intake of CP and IF for anti-cancer treatment is typically 10 g within a few months. Under such conditions, a relative risk of 1.5 for the carcinogenic compounds CP and IF is reported in the literature. In the worst case, the maximum possible intake by drinking water is less than 10(-3) (IF) and 10(-5) (CP) of this amount, based on highest measured local concentrations. On a nationwide average, the factor is approx. 10(-6) or less. CONCLUSIONS: The additional intake of CP and IF due to their emission into surface water and its use without further treatment as drinking water is low compared to intake within a therapy. This approach has shortcomings. It illustrates the current lack of methodology and knowledge for the specific risk assessment of carcinogenic pharmaceuticals in the aquatic environment. IF and CP are directly reacting with the DNA. Therefore, with respect to health effects a safe threshold concentration for these compounds cannot be given. The resulting risk is higher for newborns and children than for adults. Due to the lack of data the risk for newborns and children cannot be assessed fully. The data presented here show that according to present knowledge the additional risk of cancer cannot be fully excluded, especially with respect to children. Due to the shortage of data for effects of CP and IF in low doses during a whole lifespan, possible effects were assessed using data of high doses of CP and IF within short-term ingestion, i.e. therapy. This remains an unresolved issue. Anyway, the risk assessment performed here could give a rough measure of the risks on the one hand and the methodological shortcomings on the other hand which are connected to the assessment of the input of genotoxic and carcinogenic pharmaceuticals such as CP and IF into the aquatic environment. Therefore, we recommend to take measures to reduce the input of CP and IF and other carcinogenic pharmaceuticals. We hope that our manuscript further stimulates the discussion about the human risk assessment for carcinogenic pharmaceuticals in the aquatic environment. RECOMMENDATIONS AND PERSPECTIVES: CP and IF are carcinogens. With respect to newborn and children, reduction of the emission of CP and IF into effluent and surface water is recommended at least as a precautionary measure. The collection of unused and outdated drugs is a suitable measure. Collection of patients' excreta as a measure of input reduction is not recommended. Data suitable for the assessment of the risk for newborn and children should be collected in order to perform a risk assessment for these groups. This can stimulate discussion and give new insights into risk assessment for pharmaceuticals in the environment. Our study showed that in the long term, effective risk management for the reduction of the input of CP and IF are recommendable.


Assuntos
Carcinógenos Ambientais/análise , Ciclofosfamida/análise , Água Doce/química , Ifosfamida/análise , Poluentes Químicos da Água/análise , Antineoplásicos Alquilantes/análise , Ciclofosfamida/química , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Ifosfamida/química , Razão de Chances , Medição de Risco , Esgotos/química , Eliminação de Resíduos Líquidos , Abastecimento de Água/análise
20.
Chemosphere ; 62(2): 294-302, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16039694

RESUMO

Pharmaceuticals and contrast media have been detected in hospital effluents, sewage treatment plants, surface water, and ground water. Only little is known about their elimination during sewage treatment and effects of possible biotransformation products against bacteria. The modified Zahn-Wellens test (ZWT, OECD 302 B) and a test simulating biological sewage treatment (modified OECD 303 A test) were used to assess the biodegradability of the widely used ionic iodinated contrast agent diatrizoic acid (diatrizoate). Effects against sewage sludge bacteria were studied in the two test systems by monitoring the biomarkers quinones, polyamines, phospholipids and adenosine triphosphate. Diatrizoate was biotransformed into 2,4,6-triiodo-3,5-diamino-benzoic acid in the ZWT. 2,4,6-Triiodo-3,5-diamino-benzoic acid was stable under the test conditions of the ZWT. Diatrizoate was not eliminated in the OECD 303 A simulation test. It was not adsorbed by the sewage sludge. No effects of the test compound or its aerobic transformation products against the bacteria present in the sewage sludge were detected using phospholipids, quinones, polyamines, and adenosine triphosphate as biomarkers.


Assuntos
Bactérias Aeróbias/efeitos dos fármacos , Meios de Contraste/análise , Diatrizoato/análise , Esgotos/microbiologia , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Aerobiose , Biodegradação Ambiental , Biotransformação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA