Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Bone Rep ; 14: 101059, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34026950

RESUMO

PURPOSE: Lipocalin 2 (LCN2) is an adipokine involved in many physiological functions, including bone metabolism. We previously demonstrated its implication in mouse models of mechanical unloading-induced osteoporosis and in a cohort of bed rest volunteers. We therefore aimed at studying its involvement in postmenopausal osteoporosis. METHODS: We measured serum LCN2 and correlated its levels to Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1), Tartrate Resistant Acid Phosphatase 5B (TRAcP5B), sclerostin, urinary N-terminal telopeptide of type I collagen (NTX), serum C-terminal telopeptide of type I collagen (CTX), parathyroid hormone and vitamin K by ELISA performed in a cohort of younger (50-65 years) and older (66-90 years) osteoporotic women in comparison to healthy subjects. A cohort of male healthy and osteoarthritic patients was also included. Sobel mediation analysis was used to test indirect associations among age, LCN2 and DKK1 or NTX. RESULTS: LCN2 levels were unchanged in osteoporotic and in osteoarthritis patients when compared to healthy subjects and did not correlate with BMD. However, serum LCN2 correlated with age in healthy women (R = 0.44; P = 0.003) and men (R = 0.5; P = 0.001) and serum concentrations of DKK1 (R = 0.47; P = 0.003) and urinary NTX (R = 0.34; P = 0.04). Sobel mediation analysis showed that LCN2 mediates an indirect relationship between age and DKK1 (P = 0.02), but not with NTX, in healthy subjects. CONCLUSIONS: Taken together, the results suggest a hitherto unknown association between LCN2, DKK1 and age in healthy individuals, but not in postmenopausal osteoporotic women.

2.
J Bone Miner Res ; 35(6): 1065-1076, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32017184

RESUMO

We investigated mechanisms resulting in low bone mineral density (BMD) and susceptibility to fracture by comparing noncoding RNAs (ncRNAs) in biopsies of non-weight-bearing (NWB) iliac (n = 84) and weight bearing (WB) femoral (n = 18) postmenopausal bone across BMDs varying from normal (T-score > -1.0) to osteoporotic (T-score ≤ -2.5). Global bone ncRNA concentrations were determined by PCR and microchip analyses. Association with BMD or fracture, adjusted by age and body mass index, were calculated using linear and logistic regression and least absolute shrinkage and selection operator (Lasso) analysis. At 10% false discovery rate (FDR), 75 iliac bone ncRNAs and 94 femoral bone ncRNAs were associated with total hip BMD. Eight of the ncRNAs were common for the two sites, but five of them (miR-484, miR-328-3p, miR-27a-5p, miR-28-3p, and miR-409-3p) correlated positively to BMD in femoral bone, but negatively in iliac bone. Of predicted pathways recognized in bone metabolism, ECM-receptor interaction and proteoglycans in cancer emerged at both sites, whereas fatty acid metabolism and focal adhesion were only identified in iliac bone. Lasso analysis and cross-validations identified sets of nine bone ncRNAs correlating strongly with adjusted total hip BMD in both femoral and iliac bone. Twenty-eight iliac ncRNAs were associated with risk of fracture (FDR < 0.1). The small nucleolar RNAs, RNU44 and RNU48, have a function in stabilization of ribosomal RNAs (rRNAs), and their association with fracture and BMD suggest that aberrant processing of rRNAs may be involved in development of osteoporosis. Cis-eQTL (expressed quantitative trait loci) analysis of the iliac bone biopsies identified two loci associated with microRNAs (miRNAs), one previously identified in a heel-BMD genomewide association study (GWAS). In this comprehensive investigation of the skeletal genetic background in postmenopausal women, we identified functional bone ncRNAs associated to fracture and BMD, representing distinct subsets in WB and NWB skeletal sites. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Assuntos
Densidade Óssea , Fraturas Ósseas , Osteoporose , RNA não Traduzido/genética , Densidade Óssea/genética , Osso e Ossos , Feminino , Fraturas Ósseas/genética , Humanos , Osteoporose/genética , Suporte de Carga
4.
Bone ; 101: 88-95, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28450214

RESUMO

The skeleton is a metabolically active organ throughout life where specific bone cell activity and paracrine/endocrine factors regulate its morphogenesis and remodeling. In recent years, an increasing number of reports have used multi-omics technologies to characterize subsets of bone biological molecular networks. The skeleton is affected by primary and secondary disease, lifestyle and many drugs. Therefore, to obtain relevant and reliable data from well characterized patient and control cohorts are vital. Here we provide a brief overview of omics studies performed on human bone, of which our own studies performed on trans-iliacal bone biopsies from postmenopausal women with osteoporosis (OP) and healthy controls are among the first and largest. Most other studies have been performed on smaller groups of patients, undergoing hip replacement for osteoarthritis (OA) or fracture, and without healthy controls. The major findings emerging from the combined studies are: 1. Unstressed and stressed bone show profoundly different gene expression reflecting differences in bone turnover and remodeling and 2. Omics analyses comparing healthy/OP and control/OA cohorts reveal characteristic changes in transcriptomics, epigenomics (DNA methylation), proteomics and metabolomics. These studies, together with genome-wide association studies, in vitro observations and transgenic animal models have identified a number of genes and gene products that act via Wnt and other signaling systems and are highly associated to bone density and fracture. Future challenge is to understand the functional interactions between bone-related molecular networks and their significance in OP and OA pathogenesis, and also how the genomic architecture is affected in health and disease.


Assuntos
Osso e Ossos/metabolismo , Metilação de DNA/genética , Epigenômica/métodos , Estudo de Associação Genômica Ampla , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Transcriptoma/genética , Transcriptoma/fisiologia
5.
J Bone Miner Res ; 31(12): 2085-2097, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27476799

RESUMO

Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n = 15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n = 21,701) and clinical vertebral fracture (n = 5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF] = 3%) was associated with higher vBMD (ß = 0.22, p = 1.9 × 10-8 ) and decreased risk of radiographic vertebral fracture (odds ratio [OR] = 0.75; false discovery rate [FDR] p = 0.01). In 1p36.12, rs12742784 (MAF = 21%) was associated with higher vBMD (ß = 0.09, p = 1.2 × 10-10 ) and decreased risk of clinical vertebral fracture (OR = 0.82; FDR p = 7.4 × 10-4 ). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (ß = 0.28, FDR p = 0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (ß = 0.12, FDR p = 1.7 × 10-3 , functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to link SLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral bone biology and novel approaches to reducing vertebral fracture incidence. © 2016 American Society for Bone and Mineral Research.


Assuntos
Densidade Óssea/genética , Transportador 1 de Aminoácido Excitatório/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Receptor EphB2/genética , Fraturas da Coluna Vertebral/genética , Coluna Vertebral/patologia , Animais , Biópsia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Osso Esponjoso/fisiopatologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica , Humanos , Desequilíbrio de Ligação/genética , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Vértebras Lombares/fisiopatologia , Camundongos , Anotação de Sequência Molecular , Tamanho do Órgão , Osteoblastos/metabolismo , Locos de Características Quantitativas/genética , Receptor EphB2/metabolismo , Fatores de Risco , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/patologia , Fraturas da Coluna Vertebral/fisiopatologia , Coluna Vertebral/diagnóstico por imagem
6.
Cancer Lett ; 358(1): 67-75, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25529009

RESUMO

cyclicCHAD is a peptide representing the α2ß1 integrin binding sequence of the matrix protein chondroadherin (CHAD), which in our hands proved effective at counteracting bone loss in ovariectomised mice by inhibiting osteoclastogenesis. Given that bone metastases are characterised by exacerbated osteoclast activity as well, we tested this therapy in mice intracardiacally injected with the osteotropic human breast cancer cell line MDA-MB-231. Treatment with cyclicCHAD significantly decreased cachexia and incidence of bone metastases, and induced a trend of reduction of visceral metastasis volume, while in orthotopically injected mice cyclicCHAD reduced tumour volume. In vitro studies showed its ability to impair tumour cell motility and invasion, suggesting a direct effect not only on osteoclasts but also on the tumour cell phenotype. Interestingly, when administered together with a suboptimal, poorly effective, dose of doxorubicin (DXR), cyclicCHAD improved survival and reduced visceral metastases volume to a level similar to that of the optimal dose of DXR alone. Taken together, these preclinical data suggest that cyclicCHAD is a new inhibitor of bone metastases, with an appreciable direct effect also on tumour growth and a synergistic activity in combination with low dose chemotherapy, underscoring an important translational impact.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Proteínas da Matriz Extracelular/metabolismo , Integrina alfa2beta1/metabolismo , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Neoplasias da Mama/patologia , Caquexia/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Proteínas da Matriz Extracelular/administração & dosagem , Feminino , Humanos , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Estrutura Terciária de Proteína
7.
J Bone Miner Res ; 29(8): 1833-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24616121

RESUMO

Chondroadherin (CHAD) is a leucine-rich protein promoting cell attachment through binding to integrin α2 ß1 and syndecans. We observed that CHAD mRNA and protein were lower in bone biopsies of 50-year-old to 65-year-old osteoporotic women and in bone samples of ovariectomized mice versus gender/age-matched controls, suggesting a role in bone metabolism. By the means of an internal cyclic peptide (cyclicCHAD), we observed that its integrin binding sequence impaired preosteoclast migration through a nitric oxide synthase 2-dependent mechanism, decreasing osteoclastogenesis and bone resorption in a concentration-dependent fashion, whereas it had no effect on osteoblasts. Consistently, cyclicCHAD reduced transcription of two nitric oxide downstream genes, migfilin and vasp, involved in cell motility. Furthermore, the nitric oxide donor, S-nitroso-N-acetyl-D,L-penicillamine, stimulated preosteoclast migration and prevented the inhibitory effect of cyclicCHAD. Conversely, the nitric oxide synthase 2 (NOS2) inhibitor, N5-(1-iminoethyl)-l-ornithine, decreased both preosteoclast migration and differentiation, confirming a role of the nitric oxide pathway in the mechanism of action triggered by cyclicCHAD. In vivo, administration of cyclicCHAD was well tolerated and increased bone volume in healthy mice, with no adverse effect. In ovariectomized mice cyclicCHAD improved bone mass by both a preventive and a curative treatment protocol, with an effect in line with that of the bisphosphonate alendronate, that was mimicked by the NOS2 inhibitor [L-N6-(1-Iminoethyl)-lysine.2 dihydrochloride]. In both mouse models, cyclicCHAD reduced osteoclast and bone resorption without affecting osteoblast parameters and bone formation. In conclusion, CHAD is a novel regulator of bone metabolism that, through its integrin binding domain, inhibits preosteoclast motility and bone resorption, with a potential translational impact for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Osteoclastos , Idoso , Animais , Western Blotting , Conservadores da Densidade Óssea/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/química , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Ovariectomia , Peptídeos/farmacologia
8.
BMC Cancer ; 14: 80, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24512620

RESUMO

BACKGROUND: Improved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen. The aim of this study was to a) identify differentially expressed miRNAs in high-grade serous ovarian carcinoma (HGSC), clear cell ovarian carcinoma (CCC) and ovarian surface epithelium (OSE), b) evaluate selected miRNAs for association with clinical parameters including survival and c) map miRNA-mRNA interactions. METHODS: Differences in miRNA expression between HGSC, CCC and OSE were analyzed by global miRNA expression profiling (Affymetrix GeneChip miRNA 2.0 Arrays, n = 12, 9 and 9, respectively), validated by RT-qPCR (n = 35, 19 and 9, respectively), and evaluated for associations with clinical parameters. For HGSC, differentially expressed miRNAs were linked to differentially expressed mRNAs identified previously. RESULTS: Differentially expressed miRNAs (n = 78) between HGSC, CCC and OSE were identified (FDR < 0.01%), of which 18 were validated (p < 0.01) using RT-qPCR in an extended cohort. Compared with OSE, miR-205-5p was the most overexpressed miRNA in HGSC. miR-200 family members and miR-182-5p were the most overexpressed in HGSC and CCC compared with OSE, whereas miR-383 was the most underexpressed. miR-205-5p and miR-200 members target epithelial-mesenchymal transition (EMT) regulators, apparently being important in tumor progression. miR-509-3-5p, miR-509-5p, miR-509-3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being significantly overexpressed in CCC compared with HGSC. High miR-200c-3p expression was associated with poor progression-free (p = 0.031) and overall (p = 0.026) survival in HGSC patients. Interacting miRNA and mRNA targets, including those of a TP53-related pathway presented previously, were identified in HGSC. CONCLUSIONS: Several miRNAs differentially expressed between HGSC, CCC and OSE have been identified, suggesting a carcinogenetic role for these miRNAs. miR-200 family members, targeting EMT drivers, were mostly overexpressed in both subgroups, among which miR-200c-3p was associated with survival in HGSC patients. A set of miRNAs differentiates CCC from HGSC, of which miR-509-3-5p and miR-509-5p are the strongest classifiers. Several interactions between miRNAs and mRNAs in HGSC were mapped.


Assuntos
Adenocarcinoma de Células Claras/genética , Biomarcadores Tumorais/genética , Cistadenocarcinoma Seroso/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/genética , Adenocarcinoma de Células Claras/diagnóstico , Adenocarcinoma de Células Claras/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/biossíntese , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/metabolismo , Feminino , Seguimentos , Humanos , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Prognóstico
9.
PLoS One ; 8(7): e70721, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936243

RESUMO

BACKGROUND: Molecular mechanisms explaining age-related changes in the bone marrow with reduced precursor B cell output are poorly understood. METHODS: We studied the transcriptome of five precursor B cell subsets in individual bone marrow samples from 4 healthy children and 4 adults employing GeneChip® Human Exon 1.0 ST Arrays (Affymetrix®) and TaqMan® Array MicroRNA Cards (Life Technologies™). RESULTS: A total of 1796 mRNAs (11%) were at least once differentially expressed between the various precursor B cell subsets in either age group (FDR 0.1%, p≤1.13×10(-4)) with more marked cell stage specific differences than those related to age. In contrast, microRNA profiles of the various precursor B cell subsets showed less hierarchical clustering as compared to the corresponding mRNA profiles. However, 17 of the 667 microRNA assays (2.5%) were at least once differentially expressed between the subsets (FDR 10%, p≤0.004). From target analysis (Ingenuity® Systems), functional assignment between postulated interacting mRNAs and microRNAs showed especially association to cellular growth, proliferation and cell cycle regulation. One functional network connected up-regulation of the differentiation inhibitor ID2 mRNA to down-regulation of the hematopoiesis- or cell cycle regulating miR-125b-5p, miR-181a-5p, miR-196a-5p, miR-24-3p and miR-320d in adult PreBII large cells. Noteworthy was also the stage-dependent expression of the growth promoting miR-17-92 cluster, showing a partly inverse trend with age, reaching statistical significance at the PreBII small stage (up 3.1-12.9 fold in children, p = 0.0084-0.0270). CONCLUSIONS: The global mRNA profile is characteristic for each precursor B cell developmental stage and largely similar in children and adults. The microRNA profile is much cell stage specific and not changing much with age. Importantly, however, specific age-dependent differences involving key networks like differentiation and cellular growth may indicate biological divergence and possibly also altered production potential with age.


Assuntos
Células da Medula Óssea/metabolismo , Perfilação da Expressão Gênica , Variação Genética , MicroRNAs/genética , Células Precursoras de Linfócitos B/metabolismo , RNA Mensageiro/genética , Fatores Etários , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Células da Medula Óssea/citologia , Diferenciação Celular/genética , Análise por Conglomerados , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Lactente , Pessoa de Meia-Idade , Células Precursoras de Linfócitos B/citologia , RNA Longo não Codificante
10.
J Immunol ; 191(3): 1210-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23825313

RESUMO

Precursor B cell production from bone marrow in mice and humans declines with age. Because the mechanisms behind are still unknown, we studied five precursor B cell subsets (ProB, PreBI, PreBII large, PreBII small, immature B) and their differentiation-stage characteristic gene expression profiles in healthy individual toddlers and middle-aged adults. Notably, the composition of the precursor B cell compartment did not change with age. The expression levels of several transcripts encoding V(D)J recombination factors were decreased in adults as compared with children: RAG1 expression was significantly reduced in ProB cells, and DNA-PKcs, Ku80, and XRCC4 were decreased in PreBI cells. In contrast, TdT was 3-fold upregulated in immature B cells of adults. Still, N-nucleotides, P-nucleotides, and deletions were similar for IGH and IGK junctions between children and adults. PreBII large cells in adults, but not in children, showed highly upregulated expression of the differentiation inhibitor, inhibitor of DNA binding 2 (ID2), in absence of changes in expression of the ID2-binding partner E2A. Further, we identified impaired Ig locus contraction in adult precursor B cells as a likely mechanism by which ID2-mediated blocking of E2A function results in reduced bone marrow B cell output in adults. The reduced B cell production was not compensated by increased proliferation in adult immature B cells, despite increased Ki67 expression. These findings demonstrate distinct regulatory mechanisms in B cell differentiation between adults and children with a central role for transcriptional regulation of ID2.


Assuntos
Subpopulações de Linfócitos B/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína 2 Inibidora de Diferenciação/metabolismo , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Antígenos Nucleares/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , DNA Nucleotidilexotransferase/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Lactente , Proteína 2 Inibidora de Diferenciação/biossíntese , Proteína 2 Inibidora de Diferenciação/genética , Antígeno Ki-67/biossíntese , Autoantígeno Ku , Contagem de Linfócitos , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , RNA Mensageiro/biossíntese , Transdução de Sinais/imunologia , Regulação para Cima , Recombinação V(D)J/genética
11.
PLoS One ; 7(9): e46317, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029477

RESUMO

BACKGROUND: The oncogenesis of ovarian cancer is poorly understood. The aim of this study was to identify mRNAs differentially expressed between moderately and poorly differentiated (MD/PD) serous ovarian carcinomas (SC), serous ovarian borderline tumours (SBOT) and superficial scrapings from normal ovaries (SNO), and to correlate these mRNAs with clinical parameters including survival. METHODS: Differences in mRNA expression between MD/PD SC, SBOT and SNO were analyzed by global gene expression profiling (n = 23), validated by RT-qPCR (n = 41) and correlated with clinical parameters. RESULTS: Thirty mRNAs differentially expressed between MD/PD SC, SBOT and SNO were selected from the global gene expression analyses, and 21 were verified (p<0.01) by RT-qPCR. Of these, 13 mRNAs were differentially expressed in MD/PD SC compared with SNO (p<0.01) and were correlated with clinical parameters. ZNF385B was downregulated (FC = -130.5, p = 1.2×10(-7)) and correlated with overall survival (p = 0.03). VEGFA was upregulated (FC = 6.1, p = 6.0×10(-6)) and correlated with progression-free survival (p = 0.037). Increased levels of TPX2 and FOXM1 mRNAs (FC = 28.5, p = 2.7×10(-10) and FC = 46.2, p = 5.6×10(-4), respectively) correlated with normalization of CA125 (p = 0.03 and p = 0.044, respectively). Furthermore, we present a molecular pathway for MD/PD SC, including VEGFA, FOXM1, TPX2, BIRC5 and TOP2A, all significantly upregulated and directly interacting with TP53. CONCLUSIONS: We have identified 21 mRNAs differentially expressed (p<0.01) between MD/PD SC, SBOT and SNO. Thirteen were differentially expressed in MD/PD SC, including ZNF385B and VEGFA correlating with survival, and FOXM1 and TPX2 with normalization of CA125. We also present a molecular pathway for MD/PD SC.


Assuntos
Carcinoma/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Ovário/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma/mortalidade , Carcinoma/patologia , Estudos de Casos e Controles , Progressão da Doença , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Ovário/patologia , Isoformas de Proteínas/genética , RNA Mensageiro/genética
12.
J Bone Miner Res ; 26(8): 1793-801, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21452281

RESUMO

Genome-wide gene expressions in bone biopsies from patients with postmenopausal osteoporosis and healthy controls were profiled, to identify osteoporosis candidate genes. All osteoporotic patients (n = 27) in an unbiased cohort of Norwegian women presented with bone mineral density (BMD) T-scores of less than -2.5 SD and one or more confirmed low-energy fracture(s). A validation group (n = 18) had clinical and laboratory parameters intermediate to the control (n = 39) and osteoporosis groups. RNA from iliac crest bone biopsies were analyzed by Affymetrix microarrays and real-time reverse-transcriptase polymerase chain reaction (RT-PCR). Differentially expressed genes in osteoporosis versus control groups were identified using the Bayesian ANOVA for microarrays (BAMarray) method, whereas the R-package Limma (Linear Models for Microarray Data) was used to determine whether these transcripts were explained by disease, age, body mass index (BMI), or combinations thereof. Laboratory tests showed normal ranges for the cohort. A total of 609 transcripts were differentially expressed in osteoporotic patients relative to controls; 256 transcripts were confirmed for disease when controlling for age or BMI. Most of the osteoporosis susceptibility genes (80%) also were confirmed to be regulated in the same direction in the validation group. Furthermore, 217 of 256 transcripts were correlated with BMD (adjusted for age and BMI) at various skeletal sites (|r| > 0.2, p < .05). Among the most distinctly expressed genes were Wnt antagonists DKK1 and SOST, the transcription factor SOX4, and the bone matrix proteins MMP13 and MEPE, all reduced in osteoporosis versus control groups. Our results identify potential osteoporosis susceptibility candidate genes adjusted for confounding factors (ie, age and BMI) with or without a significant correlation with BMD.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/patologia , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/patologia , Envelhecimento/genética , Biópsia , Índice de Massa Corporal , Densidade Óssea/genética , Osso e Ossos/fisiopatologia , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Estilo de Vida , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
PLoS One ; 5(11): e13837, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21079801

RESUMO

BACKGROUND: Epithelial ovarian cancer (EOC) constitutes more than 90% of ovarian cancers and is associated with high mortality. EOC comprises a heterogeneous group of tumours, and the causes and molecular pathology are essentially unknown. Improved insight into the molecular characteristics of the different subgroups of EOC is urgently needed, and should eventually lead to earlier diagnosis as well as more individualized and effective treatments. Previously, we reported a limited number of mRNAs strongly upregulated in human osteosarcomas and other malignancies, and six were selected to be tested for a possible association with three subgroups of ovarian carcinomas and clinical parameters. METHODOLOGY/PRINCIPAL FINDINGS: The six selected mRNAs were quantified by RT-qPCR in biopsies from eleven poorly differentiated serous carcinomas (PDSC, stage III-IV), twelve moderately differentiated serous carcinomas (MDSC, stage III-IV) and eight clear cell carcinomas (CCC, stage I-IV) of the ovary. Superficial scrapings from six normal ovaries (SNO), as well as biopsies from three normal ovaries (BNO) and three benign ovarian cysts (BBOC) were analyzed for comparison. The gene expression level was related to the histological and clinical parameters of human ovarian carcinoma samples. One of the mRNAs, DNA polymerase delta 2 small subunit (POLD2), was increased in average 2.5- to almost 20-fold in MDSC and PDSC, respectively, paralleling the degree of dedifferentiation and concordant with a poor prognosis. Except for POLD2, the serous carcinomas showed a similar transcription profile, being clearly different from CCC. Another mRNA, Killer-specific secretory protein of 37 kDa (KSP37) showed six- to eight-fold higher levels in CCC stage I compared with the more advanced staged carcinomas, and correlated positively with an improved clinical outcome. CONCLUSIONS/SIGNIFICANCE: We have identified two biomarkers which are markedly upregulated in two subgroups of ovarian carcinomas and are also associated with stage and outcome. The results suggest that POLD2 and KSP37 might be potential prognostic biomarkers.


Assuntos
Proteínas Sanguíneas/genética , DNA Polimerase III/genética , Neoplasias Ovarianas/genética , RNA Mensageiro/metabolismo , Idoso , Carcinoma Epitelial do Ovário , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/genética , Avaliação de Resultados em Cuidados de Saúde , Cistos Ovarianos/diagnóstico , Cistos Ovarianos/genética , Neoplasias Ovarianas/diagnóstico , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Matrix Biol ; 29(7): 594-601, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20654714

RESUMO

Periostin is a 90 kDa secreted protein, originally identified in murine osteoblast-like cells, with a distribution restricted to collagen-rich tissues and certain tumors. In this paper, we first analyzed the expression of periostin mRNA and protein in human fetal osteoblasts (hFOB) and human osteosarcoma (hOS) cell lines by RT real-time PCR and Western blot, respectively. The hFOB 1.19 and three hOS (MHM, KPDXM and Eggen) showed highly variable periostin mRNA levels and protein. Second, we showed that the expression of periostin mRNA was inversely related to the cells' abilities to differentiate and mineralize. Then, we investigated the regulation of periostin mRNA in hFOB after siRNA treatment and in mouse primary osteoblasts (mOB) treated with PTH. Knock-down of periostin mRNA, down-regulated PTHrP, but did not affect the expression of other important markers of differentiation such as RUNX2. In addition, periostin mRNA was transiently up-regulated in osteoblasts by PTH. Finally, the localization of periostin and its partially co-localization with collagen 1a1 mRNA and protein was studied in mouse embryos and postnatal pups using in situ hybridization and immunohistochemistry, respectively. In conclusion, the present study provides novel observations related to the expression, distribution and regulation of periostin in bone cells and extracellular matrix.


Assuntos
Matriz Óssea/metabolismo , Moléculas de Adesão Celular/metabolismo , Colágeno Tipo I/metabolismo , Regulação da Expressão Gênica/fisiologia , Hormônio Paratireóideo/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/genética , Cartilagem/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Subunidades alfa de Fatores de Ligação ao Core/genética , Regulação para Baixo/genética , Embrião de Mamíferos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteossarcoma , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , RNA Interferente Pequeno/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
PLoS One ; 5(5): e10692, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20502692

RESUMO

BACKGROUND: The skeletal site-specific influence of multiple genes on bone morphology is recognised, but the question as to how these influences may be exerted at the molecular and cellular level has not been explored. METHODOLOGY: To address this question, we have compared global gene expression profiles of human trabecular bone from two different skeletal sites that experience vastly different degrees of mechanical loading, namely biopsies from iliac crest and lumbar spinal lamina. PRINCIPAL FINDINGS: In the lumbar spine, compared to the iliac crest, the majority of the differentially expressed genes showed significantly increased levels of expression; 3406 transcripts were up- whilst 838 were down-regulated. Interestingly, all gene transcripts that have been recently demonstrated to be markers of osteocyte, as well as osteoblast and osteoclast-related genes, were markedly up-regulated in the spine. The transcriptome data is consistent with osteocyte numbers being almost identical at the two anatomical sites, but suggesting a relatively low osteocyte functional activity in the iliac crest. Similarly, osteoblast and osteoclast expression data suggested similar numbers of the cells, but presented with higher activity in the spine than iliac crest. This analysis has also led to the identification of expression of a number of transcripts, previously known and novel, which to our knowledge have never earlier been associated with bone growth and remodelling. CONCLUSIONS AND SIGNIFICANCE: This study provides molecular evidence explaining anatomical and micro-architectural site-related changes in bone cell function, which is predominantly attributable to alteration in cell transcriptional activity. A number of novel signaling molecules in critical pathways, which have been hitherto not known to be expressed in bone cells of mature vertebrates, were identified.


Assuntos
Osso e Ossos/metabolismo , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/citologia , Redes Reguladoras de Genes/genética , Humanos , Masculino , Mecanotransdução Celular/genética , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Osteócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Estatística como Assunto , Sindecanas/genética , Sindecanas/metabolismo , Regulação para Cima/genética
16.
FASEB J ; 24(8): 2893-903, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20354137

RESUMO

A transcriptome analysis compared gene expression in human bone biopsy samples taken from lumbar spine and iliac crest, sites that experience high and low levels of mechanical stress, respectively. The analysis revealed that the zinc finger protein of cerebellum (Zic) family member transcription factor Zic1 was the most up-regulated gene in the lumbar spine (202-fold; P<10(-7)) in comparison with the iliac crest. Software analysis of differential gene expression in the biopsy samples identified the ciliary-related proteins PATCH1 and GLI-Kruppel family members Gli1 and Gli3 as part of a potential molecular network associated with Zic1. RT-PCR confirmed the expression of Zic1, Gli1, and Gli3 and other related key signaling mediators in osteoblastic cells and osteocytes in vitro. Zic1 was immunolocalized in the cytosol and nucleus of the murine osteocyte cell line MLO-Y4 and osteoblast-like cells MC3T3-E1 and in primary rat osteoblasts. MLO-Y4 cells subjected to prolonged oscillatory fluid flow showed increased localization of Zic1 in the nucleus with diminished levels in the cytosol, but no such changes were seen in MC3T3-E1 cells. A shear stress-induced increase in T-cell factor/lymphoid enhancer factor transcriptional activity was abolished by Zic1 gene silencing. These results suggest that Zic1, perhaps together with Gli1 and Gli3, may act as a link between mechanosensing and Wnt signaling. We conclude that Zic1, a neural developmental transcription factor, plays an important role in shear flow mechanotransduction in osteocytes.


Assuntos
Osso e Ossos/metabolismo , Mecanotransdução Celular , Osteócitos/metabolismo , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular , Cílios , Perfilação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Ratos , Estresse Mecânico , Proteína GLI1 em Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
17.
Pediatr Hematol Oncol ; 27(1): 31-45, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20121553

RESUMO

The number of circulating B-cells in peripheral blood plateaus between 2 and 24 months of age, and thereafter declines gradually. How this reflects the kinetics of the precursor B-cell pool in the bone marrow is of clinical interest, but has not been studied thoroughly in humans. The authors analyzed bone marrow (n = 37) from healthy children and adults (flow cytometry) searching for age-related changes in the total precursor B-cell compartment. In an age-matched cohort (n = 25) they examined age-related global gene expression changes (Affymetrix) in unsorted bone marrow with special reference to the recombination activating gene 1, RAG1. Subsequently, they searched the entire gene set for transcripts correlating to the RAG1 profile to discover other known and possibly new precursor B-cell related transcripts. Both methods disclosed a marked, transient increase of total precursor B-cells at 6-20 months, followed by a rapid decrease confined to the first 2 years. The decline thereafter was considerably slower, but continued until adulthood. The relative composition of total precursor B-cells, however, did not change significantly with age. The authors identified 54 genes that were highly correlated to the RAG1 profile (r >or= .9, p < 1 x 10(-8)). Of these 54 genes, 15 were characteristically B-lineage associated like CD19, CD79, VPREB, EBF1, and PAX5; the remaining 39 previously not described as distinctively B-lineage related. The marked, transient increase in precursor B-cells and RAG1 transcriptional activity is not reflected by a similar peak in B-cells in peripheral blood, whereas the sustained plateau concurs in time.


Assuntos
Envelhecimento/sangue , Subpopulações de Linfócitos B , Pré-Escolar , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas , Lactente , Contagem de Linfócitos , Adolescente , Adulto , Envelhecimento/imunologia , Medula Óssea/crescimento & desenvolvimento , Exame de Medula Óssea , Linhagem da Célula , Criança , Estudos de Coortes , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Recém-Nascido , Masculino , RNA Mensageiro/genética , Transcrição Gênica , Adulto Jovem
18.
Bone ; 46(3): 604-12, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19922823

RESUMO

Low bone mineral density (BMD) is an important risk factor for skeletal fractures which occur in about 40% of women >/=50 years in the western world. We describe the transcriptional changes in 84 trans-iliacal bone biopsies associated with BMD variations in postmenopausal females (50 to 86 years), aiming to identify genetic determinants of bone structure. The women were healthy or having a primary osteopenic or osteoporotic status with or without low energy fractures. The total cohort of 91 unrelated women representing a wide range of BMDs, were consecutively registered and submitted to global gene Affymetrix microarray expression analysis or histomorphometry. Among almost 23,000 expressed transcripts, a set represented by ACSL3 (acyl-CoA synthetase long-chain family member 3), NIPSNAP3B (nipsnap homolog 3B), DLEU2 (Deleted in lymphocytic leukemia, 2), C1ORF61 (Chromosome 1 open reading frame 61), DKK1 (Dickkopf homolog 1), SOST (Sclerostin), ABCA8, (ATP-binding cassette, sub-family A, member 8), and uncharacterized (AFFX-M27830-M-at), was significantly correlated to total hip BMD (5% false discovery rate) explaining 62% of the BMD variation expressed as T-score, 53% when adjusting for the influence of age (Z-score) and 44% when further adjusting for body mass index (BMI). Only SOST was previously associated to BMD, and the majority of the genes have previously not been associated with a bone phenotype. In molecular network analyses, SOST shows a strong, positive correlation with DKK1, both being members of the Wnt signaling pathway. The results provide novel insight in the underlying biology of bone metabolism and osteoporosis which is the ultimate consequence of low BMD.


Assuntos
Densidade Óssea/genética , Variação Genética/genética , Osteoporose Pós-Menopausa/genética , Pós-Menopausa/genética , População Branca/genética , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Marcadores Genéticos/genética , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Osteoporose Pós-Menopausa/fisiopatologia , Pós-Menopausa/metabolismo
19.
J Cell Sci ; 120(Pt 16): 2785-95, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17652162

RESUMO

The transcription factor Sox4 is vital for fetal development, as Sox4(-/-) homozygotes die in utero. Sox4 mRNA is expressed in the early embryonic growth plate and is regulated by parathyroid hormone, but its function in bone modeling/remodeling is unknown. We report that Sox4(+/-) mice exhibit significantly lower bone mass (by dual-energy X-ray absorptiometry) from an early age, and fail to obtain the peak bone mass of wild-type (WT) animals. Microcomputed tomography (muCT), histomorphometry and biomechanical testing of Sox4(+/-) bones show reduced trabecular and cortical thickness, growth plate width, ultimate force and stiffness compared with WT. Bone formation rate (BFR) in 3-month-old Sox4(+/-) mice is 64% lower than in WT. Primary calvarial osteoblasts from Sox4(+/-) mice demonstrate markedly inhibited proliferation, differentiation and mineralization. In these cultures, osterix (Osx) and osteocalcin (OCN) mRNA expression was reduced, whereas Runx2 mRNA was unaffected. No functional defects were found in osteoclasts. Silencing of Sox4 by siRNA in WT osteoblasts replicated the defects observed in Sox4(+/-) cells. We demonstrate inhibited formation and altered microarchitecture of bone in Sox4(+/-) mice versus WT, without apparent defects in bone resorption. Our results implicate the transcription factor Sox4 in regulation of bone formation, by acting upstream of Osx and independent of Runx2.


Assuntos
Doenças Ósseas Metabólicas/patologia , Heterozigoto , Proteínas de Grupo de Alta Mobilidade/genética , Osteoblastos/patologia , Osteogênese/fisiologia , Transativadores/genética , Animais , Biomarcadores , Densidade Óssea/fisiologia , Células da Medula Óssea/citologia , Cálcio/sangue , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Regulação da Expressão Gênica , Haploidia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Masculino , Camundongos , Morbidade , Osteoclastos/citologia , Hormônio Paratireóideo/sangue , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXC , Tomografia Computadorizada por Raios X , Transativadores/metabolismo
20.
Am J Physiol Endocrinol Metab ; 292(5): E1465-73, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17227961

RESUMO

In primary hyperparathyroidism (PHPT), excess PTH secretion by adenomatous or hyperplastic parathyroid glands leads to elevated serum [Ca(2+)]. Patients present complex symptoms of muscular fatigue, various neuropsychiatric, neuromuscular, and cardiovascular manifestations, and, in advanced disease, kidney stones and metabolic bone disease. Our objective was to characterize changes in muscle and hematopoietic gene expression in patients with reversible mild PHPT after parathyroidectomy and possibly link molecular pathology to symptoms. Global mRNA profiling using Affymetrix gene chips was carried out in biopsies obtained before and 1 yr after parathyroidectomy in seven patients discovered by routine blood [Ca(2+)] screening. The tissue distribution of PTH receptor (PTHR1 and PTHR2) mRNAs were quantitated using real-time RT-PCR in unrelated persons to define PTH target tissues. Of about 10,000 expressed genes, 175 muscle, 169 hematological, and 99 bone-associated mRNAs were affected. Notably, the major part of muscle-related mRNAs was increased whereas hematological mRNAs were predominantly decreased during disease. Functional and molecular network analysis demonstrated major alterations of several tissue characteristic groups of mRNAs as well as those belonging to common cell signaling and major metabolic pathways. PTHR1 and PTHR2 mRNAs were more abundantly expressed in muscle and brain than in hematopoietic cells. We suggest that sustained stimulation of PTH receptors present in brain, muscle, and hematopoietic cells have to be considered as one independent, important cause of molecular disease in PHPT leading to profound alterations in gene expression that may help explain symptoms like muscle fatigue, cardiovascular pathology, and precipitation of psychiatric illness.


Assuntos
Regulação da Expressão Gênica , Sistema Hematopoético/fisiologia , Hiperparatireoidismo Primário/genética , Hormônio Paratireóideo/biossíntese , Receptor Tipo 1 de Hormônio Paratireóideo/biossíntese , Receptor Tipo 2 de Hormônio Paratireóideo/biossíntese , Idoso , Biópsia , Sistema Hematopoético/metabolismo , Humanos , Hiperparatireoidismo Primário/metabolismo , Pessoa de Meia-Idade , Músculos/metabolismo , Músculos/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Hormônio Paratireóideo/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA