Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236633

RESUMO

Delineating the complex network of interactions between antigen-specific T cells and antigen presenting cells (APCs) is crucial for effective precision therapies against cancer, chronic infections, and autoimmunity. However, the existing arsenal for examining antigen-specific T cell interactions is restricted to a select few antigen-T cell receptor pairs, with limited in situ utility. This lack of versatility is largely due to the disruptive effects of reagents on the immune synapse, which hinder real-time monitoring of antigen-specific interactions. To address this limitation, we have developed a novel and versatile immune monitoring strategy by adding a short cysteine-rich tag to antigenic peptides that emits fluorescence upon binding to thiol-reactive biarsenical hairpin compounds. Our findings demonstrate the specificity and durability of the novel antigen-targeting probes during dynamic immune monitoring in vitro and in vivo. This strategy opens new avenues for biological validation of T-cell receptors with newly identified epitopes by revealing the behavior of previously unrecognized antigen-receptor pairs, expanding our understanding of T cell responses.


Assuntos
Células Apresentadoras de Antígenos , Autoimunidade , Epitopos , Comunicação Celular , Cisteína
2.
Nat Commun ; 14(1): 7852, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030609

RESUMO

Tissue-resident macrophages are critical for tissue homeostasis and repair. We previously showed that dermis-resident macrophages produce CCL24 which mediates their interaction with IL-4+ eosinophils, required to maintain their M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we show that thymic stromal lymphopoietin (TSLP) and IL-5+ type 2 innate lymphoid cells are also required to maintain dermis-resident macrophages and promote infection. Single cell RNA sequencing reveals the dermis-resident macrophages as the sole source of TSLP and CCL24. Generation of Ccl24-cre mice permits specific labeling of dermis-resident macrophages and interstitial macrophages from other organs. Selective ablation of TSLP in dermis-resident macrophages reduces the numbers of IL-5+ type 2 innate lymphoid cells, eosinophils and dermis-resident macrophages, and ameliorates infection. Our findings demonstrate that dermis-resident macrophages are self-maintained as a replicative niche for L. major by orchestrating localized type 2 circuitries with type 2 innate lymphoid cells and eosinophils.


Assuntos
Imunidade Inata , Leishmaniose Cutânea , Animais , Camundongos , Eosinófilos/metabolismo , Interleucina-5/metabolismo , Linfócitos/metabolismo , Citocinas/metabolismo , Linfopoietina do Estroma do Timo , Macrófagos/metabolismo , Derme/metabolismo
3.
J Exp Med ; 220(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37796477

RESUMO

Checkpoint blockade revolutionized cancer therapy, but we still lack a quantitative, mechanistic understanding of how inhibitory receptors affect diverse signaling pathways. To address this issue, we developed and applied a fluorescent intracellular live multiplex signal transduction activity reporter (FILMSTAR) system to analyze PD-1-induced suppressive effects. These studies identified pathways triggered solely by TCR or requiring both TCR and CD28 inputs. Using presenting cells differing in PD-L1 and CD80 expression while displaying TCR ligands of distinct potency, we found that PD-1-mediated inhibition primarily targets TCR-linked signals in a manner highly sensitive to peptide ligand quality. These findings help resolve discrepancies in existing data about the site(s) of PD-1 inhibition in T cells while emphasizing the importance of neoantigen potency in controlling the effects of checkpoint therapy.


Assuntos
Receptor de Morte Celular Programada 1 , Transdução de Sinais , Receptor de Morte Celular Programada 1/metabolismo , Ligantes , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Antígeno B7-H1/metabolismo
4.
Res Sq ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37546912

RESUMO

Delineating the complex network of interactions between antigen-specific T cells and antigen presenting cells (APCs) is crucial for effective precision therapies against cancer, chronic infections, and autoimmunity. However, the existing arsenal for examining antigen-specific T cell interactions is restricted to a select few antigen-T cell receptor pairs, with limited in situ utility. This lack of versatility is largely due to the disruptive effects of reagents on the immune synapse, which hinder real-time monitoring of antigen-specific interactions. To address this limitation, we have developed a novel and versatile immune monitoring strategy by adding a short cysteine-rich tag to antigenic peptides that emits fluorescence upon binding to thiol-reactive biarsenical hairpin compounds. Our findings demonstrate the specificity and durability of the novel antigen-targeting probes during dynamic immune monitoring in vitro and in vivo. This strategy opens new avenues for biological validation of T-cell receptors with newly identified epitopes by revealing the behavior of previously unrecognized antigen-receptor pairs, expanding our understanding of T cell responses.

5.
Nat Immunol ; 24(1): 186-199, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536106

RESUMO

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Criança , Pandemias , Imunidade Adaptativa , Tonsila Palatina , Anticorpos Antivirais
6.
Cell Rep ; 39(9): 110896, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649361

RESUMO

HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.


Assuntos
Coinfecção , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Tuberculose , Animais , Linfócitos T CD4-Positivos , Coinfecção/patologia , Granuloma/patologia , Infecções por HIV/complicações , Infecções por HIV/patologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Tuberculose/patologia
7.
J Hepatol ; 77(3): 748-760, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35378172

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) represents the fastest growing underlying cause of hepatocellular carcinoma (HCC) and has been shown to impact immune effector cell function. The standard of care for the treatment of advanced HCC is immune checkpoint inhibitor (ICI) therapy, yet NASH may negatively affect the efficacy of ICI therapy in HCC. The immunologic mechanisms underlying the impact of NASH on ICI therapy remain unclear. METHODS: Herein, using multiple murine NASH models, we analysed the influence of NASH on the CD8+ T-cell-dependent anti-PD-1 responses against liver cancer. We characterised CD8+ T cells' transcriptomic, functional, and motility changes in mice receiving a normal diet (ND) or a NASH diet. RESULTS: NASH blunted the effect of anti-PD-1 therapy against liver cancers in multiple murine models. NASH caused a proinflammatory phenotypic change of hepatic CD8+ T cells. Transcriptomic analysis revealed changes related to NASH-dependent impairment of hepatic CD8+ T-cell metabolism. In vivo imaging analysis showed reduced motility of intratumoural CD8+ T cells. Metformin treatment rescued the efficacy of anti-PD-1 therapy against liver tumours in NASH. CONCLUSIONS: We discovered that CD8+ T-cell metabolism is critically altered in the context of NASH-related liver cancer, impacting the effectiveness of ICI therapy - a finding which has therapeutic implications in patients with NASH-related liver cancer. LAY SUMMARY: Non-alcoholic steatohepatitis represents the fastest growing cause of hepatocellular carcinoma. It is also associated with reduced efficacy of immunotherapy, which is the standard of care for advanced hepatocellular carcinoma. Herein, we show that non-alcoholic steatohepatitis is associated with impaired motility, metabolic function, and response to anti-PD-1 treatment in hepatic CD8+ T cells, which can be rescued by metformin treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Hepatopatia Gordurosa não Alcoólica , Animais , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Fígado/patologia , Neoplasias Hepáticas/etiologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Res Sq ; 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35350206

RESUMO

SARS-CoV-2 infection triggers adaptive immune responses from both T and B cells. However, most studies focus on peripheral blood, which may not fully reflect immune responses in lymphoid tissues at the site of infection. To evaluate both local and systemic adaptive immune responses to SARS-CoV-2, we collected peripheral blood, tonsils, and adenoids from 110 children undergoing tonsillectomy/adenoidectomy during the COVID-19 pandemic and found 24 with evidence of prior SARS-CoV-2 infection, including detectable neutralizing antibodies against multiple viral variants. We identified SARS-CoV-2-specific germinal center (GC) and memory B cells; single cell BCR sequencing showed that these virus-specific B cells were class-switched and somatically hypermutated, with overlapping clones in the adenoids and tonsils. Oropharyngeal tissues from COVID-19-convalescent children showed persistent expansion of GC and anti-viral lymphocyte populations associated with an IFN-γ-type response, with particularly prominent changes in the adenoids, as well as evidence of persistent viral RNA in both tonsil and adenoid tissues of many participants. Our results show robust, tissue-specific adaptive immune responses to SARS-CoV-2 in the upper respiratory tract of children weeks to months after acute infection, providing evidence of persistent localized immunity to this respiratory virus.

9.
mBio ; 12(6): e0268421, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34749533

RESUMO

The life cycle of human papillomavirus (HPV) depends on keratinocyte differentiation as the virus modulates and takes advantage of cellular pathways to replicate its genome and assemble viral particles in differentiated cells. Viral genomes are amplified in nuclear replication foci in differentiated keratinocytes, and DNA repair factors from the DNA damage response signaling pathway are recruited to replicate viral DNA. The HPV genome is associated with cellular histones at all stages of the infectious cycle, and here, we show that the histone variant macroH2A1 is bound to the HPV genome and enriched in viral replication foci in differentiated cells. macroH2A1 isoforms play important roles in cellular transcriptional repression, double-strand break repair, and replication stress. The viral E8^E2 protein also binds to the HPV genome and inhibits viral replication and gene expression by recruiting NCoR/SMRT complexes. We show here that E8^E2 and SMRT also localize within replication foci, though independently from macroH2A1. Conversely, transcription complexes containing RNA polymerase II and Brd4 are located on the surface of the foci. Foci generated with an HPV16 E8^E2 mutant genome are not enriched for SMRT or macroH2A1 but contain transcriptional complexes throughout the foci. We propose that both the cellular macroH2A1 protein and viral E8^E2 protein help to spatially separate replication and transcription activities within viral replication foci. IMPORTANCE Human papillomaviruses are small DNA viruses that cause chronic infection of cutaneous and mucosal epithelium. In some cases, persistent infection with HPV can result in cancer, and 5% of human cancers are the result of HPV infection. In differentiated cells, HPV amplifies viral DNA in nuclear replication factories and transcribes late mRNAs to produce capsid proteins. However, very little is known about the spatial organization of these activities in the nucleus. Here, we show that repressive viral and cellular factors localize within the foci to suppress viral transcription, while active transcription takes place on the surface. The cellular histone variant macroH2A1 is important for this spatial organization.


Assuntos
Alphapapillomavirus/fisiologia , Genoma Viral , Infecções por Papillomavirus/virologia , Replicação Viral , Alphapapillomavirus/genética , Histonas/genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo
10.
Front Immunol ; 12: 679856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135907

RESUMO

Neutrophil trafficking, homeostatic and pathogen elicited, depends upon chemoattractant receptors triggering heterotrimeric G-protein Gαißγ signaling, whose magnitude and kinetics are governed by RGS protein/Gαi interactions. RGS proteins typically limit Gαi signaling by reducing the duration that Gαi subunits remain GTP bound and able to activate downstream effectors. Yet how in totality RGS proteins shape neutrophil chemoattractant receptor activated responses remains unclear. Here, we show that C57Bl/6 mouse neutrophils containing a genomic knock-in of a mutation that disables all RGS protein-Gαi2 interactions (G184S) cannot properly balance chemoattractant receptor signaling, nor appropriately respond to inflammatory insults. Mutant neutrophils accumulate in mouse bone marrow, spleen, lung, and liver; despite neutropenia and an intrinsic inability to properly mobilize from the bone marrow. In vitro they rapidly adhere to ICAM-1 coated plates, but in vivo they poorly adhere to blood vessel endothelium. Those few neutrophils that cross blood vessels and enter tissues migrate haphazardly. Following Concanavalin-A administration fragmented G184S neutrophils accumulate in liver sinusoids leading to thrombo-inflammation and perivasculitis. Thus, neutrophil Gαi2/RGS protein interactions both limit and facilitate Gαi2 signaling thereby promoting normal neutrophil trafficking, aging, and clearance.


Assuntos
Senescência Celular , Quimiotaxia de Leucócito , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais , Animais , Transplante de Medula Óssea , Senescência Celular/genética , Senescência Celular/imunologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Humanos , Imunofenotipagem , Masculino , Camundongos , Neutropenia/etiologia , Neutrófilos/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo
11.
Methods Mol Biol ; 2304: 243-263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028721

RESUMO

Multiphoton microscopy has provided us the ability to visualize cell behavior and biology in intact organs due to its superiority in reaching deep into tissues. Because skin draining lymph nodes are readily accessible via minimal surgery, it is possible to characterize the intricate interactions taking place in peripheral lymph nodes intravitally. Here we describe our protocol to visualize antigen-specific T cell-dendritic cell interactions in the popliteal lymph node of immunocompetent mice. With this method, behaviors of up to four cell types, such as T cells with different antigen specificities, T cells differentiated into different effector and regulatory lineages and dendritic cells originating from mice that bear mutations in functional genes can be imaged simultaneously.


Assuntos
Células Dendríticas/imunologia , Linfonodos/imunologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Comunicação Celular , Diferenciação Celular , Movimento Celular , Células Dendríticas/transplante , Imunocompetência , Microscopia Intravital , Camundongos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Software , Linfócitos T/transplante
12.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33888584

RESUMO

Older age at the time of infection with hepatitis viruses is associated with an increased risk of liver fibrosis progression. We hypothesized that the pace of fibrosis progression may reflect changes in gene expression within the aging liver. We compared gene expression in liver specimens from 54 adult donors without evidence of fibrosis, including 36 over 40 y old and 18 between 18 and 40 y old. Chitinase 3-like 1 (CHI3L1), which encodes chitinase-like protein YKL-40/CHI3L1, was identified as the gene with the greatest age-dependent increase in expression in liver tissue. We investigated the cellular source of CHI3L1 in the liver and its function using liver tissue specimens and in vitro models. CHI3L1 expression was significantly higher in livers of patients with cirrhosis of diverse etiologies compared with controls represented by patients who underwent liver resection for hemangioma. The highest intrahepatic CHI3L1 expression was observed in cirrhosis due to hepatitis D virus, followed by hepatitis C virus, hepatitis B virus, and alcohol-induced cirrhosis. In situ hybridization of CHI3L1 messenger RNA (mRNA) identified hepatocytes as the major producers of CHI3L1 in normal liver and in cirrhotic tissue, wherein hepatocytes adjacent to fibrous septa showed higher CHI3L1 expression than did those in more distal areas. In vitro studies showed that recombinant CHI3L1 promotes proliferation and activation of primary human hepatic stellate cells (HSCs), the major drivers of liver fibrosis. These findings collectively demonstrate that CHI3L1 promotes liver fibrogenesis through a direct effect on HSCs and support a role for CHI3L1 in the increased susceptibility of aging livers to fibrosis progression.


Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Adolescente , Adulto , Envelhecimento/fisiologia , Biomarcadores/metabolismo , Proteína 1 Semelhante à Quitinase-3/fisiologia , Quitinases/metabolismo , Feminino , Expressão Gênica/genética , Hepacivirus/patogenicidade , Células Estreladas do Fígado/patologia , Hepatite C/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Fígado/citologia , Masculino
13.
Sci Immunol ; 6(55)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452107

RESUMO

Boosting immune cell function by targeting the coinhibitory receptor PD-1 may have applications in the treatment of chronic infections. Here, we examine the role of PD-1 during Mycobacterium tuberculosis (Mtb) infection of rhesus macaques. Animals treated with anti-PD-1 monoclonal antibody developed worse disease and higher granuloma bacterial loads compared with isotype control-treated monkeys. PD-1 blockade increased the number and functionality of granuloma Mtb-specific CD8 T cells. In contrast, Mtb-specific CD4 T cells in anti-PD-1-treated macaques were not increased in number or function in granulomas, expressed increased levels of CTLA-4, and exhibited reduced intralesional trafficking in live imaging studies. In granulomas of anti-PD-1-treated animals, multiple proinflammatory cytokines were elevated, and more cytokines correlated with bacterial loads, leading to the identification of a role for caspase 1 in the exacerbation of tuberculosis after PD-1 blockade. Last, increased Mtb bacterial loads after PD-1 blockade were found to associate with the composition of the intestinal microbiota before infection in individual macaques. Therefore, PD-1-mediated coinhibition is required for control of Mtb infection in macaques, perhaps because of its role in dampening detrimental inflammation and allowing for normal CD4 T cell responses.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/efeitos adversos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Tuberculose/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígeno CTLA-4/metabolismo , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Macaca mulatta , Masculino , Camundongos , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Índice de Gravidade de Doença , Exacerbação dos Sintomas , Tuberculose/diagnóstico , Tuberculose/imunologia , Tuberculose/microbiologia
14.
Sci Immunol ; 5(46)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276966

RESUMO

Tissue-resident macrophages (TRMs) maintain tissue homeostasis, but they can also provide a replicative niche for intracellular pathogens such as Leishmania How dermal TRMs proliferate and maintain their M2 properties even in the strong TH1 environment of the L. major infected dermis is not clear. Here, we show that, in infected mice lacking IL-4/13 from eosinophils, dermal TRMs shifted to a proinflammatory state, their numbers declined, and disease was attenuated. Intravital microscopy revealed a rapid infiltration of eosinophils followed by their tight interaction with dermal TRMs. IL-4-stimulated dermal TRMs, in concert with IL-10, produced a large amount of CCL24, which functioned to amplify eosinophil influx and their interaction with dermal TRMs. An intraperitoneal helminth infection model also demonstrated a requirement for eosinophil-derived IL-4 to maintain tissue macrophages through a CCL24-mediated amplification loop. CCL24 secretion was confined to resident macrophages in other tissues, implicating eosinophil-TRM cooperative interactions in diverse inflammatory settings.


Assuntos
Quimiocina CCL24/imunologia , Eosinófilos/imunologia , Interleucina-4/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Pele/imunologia , Animais , Interleucina-4/deficiência , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/citologia
15.
J Exp Med ; 216(11): 2531-2545, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31506281

RESUMO

B cells in germinal centers (GCs) cycle between light zone (LZ) and dark zone (DZ). The cues in the GC microenvironment that regulate the transition from LZ to DZ have not been well characterized. In Peyer's patches (PPs), transforming growth factor-ß (TGFß) promotes IgA induction in activated B cells that can then differentiate into GC B cells. We show here that TGFß signaling occurs in B cells in GCs and is distinct from signaling that occurs in activated B cells in PPs. Whereas in activated B cells TGFß signaling is required for IgA induction, in the GC it was instead required for the transition from LZ to DZ. In the absence of TGFß signaling, there was an accumulation of LZ GC B cells and reduced antibody affinity maturation likely due to reduced activation of Foxo1. This work identifies TGFß as a microenvironmental cue that is critical for GC homeostasis and function.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Nódulos Linfáticos Agregados/imunologia , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Linfócitos B/metabolismo , Proteína Forkhead Box O1/imunologia , Proteína Forkhead Box O1/metabolismo , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptores CCR6/genética , Receptores CCR6/imunologia , Receptores CCR6/metabolismo , Fator de Crescimento Transformador beta/metabolismo
16.
Nat Microbiol ; 4(7): 1114-1119, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30936487

RESUMO

Social interactions play an increasingly recognized key role in bacterial physiology1. One of the best studied is quorum sensing (QS), a mechanism by which bacteria sense and respond to the status of cell density2. While QS is generally deemed crucial for bacterial survival, QS-dysfunctional mutants frequently arise in in vitro culture. This has been explained by the fitness cost an individual mutant, a 'quorum cheater', saves at the expense of the community3. QS mutants are also often isolated from biofilm-associated infections, including cystic fibrosis lung infection4, as well as medical device infection and associated bacteraemia5-7. However, despite the frequently proposed use of QS blockers to control virulence8, the mechanisms underlying QS dysfunctionality during infection have remained poorly understood. Here, we show that in the major human pathogen Staphylococcus aureus, quorum cheaters arise exclusively in biofilm infection, while in non-biofilm-associated infection there is a high selective pressure to maintain QS control. We demonstrate that this infection-type dependence is due to QS-dysfunctional bacteria having a significant survival advantage in biofilm infection because they form dense and enlarged biofilms that provide resistance to phagocyte attacks. Our results link the benefit of QS-dysfunctional mutants in vivo to biofilm-mediated immune evasion, thus to mechanisms that are specific to the in vivo setting. Our findings explain why QS mutants are frequently isolated from biofilm-associated infections and provide guidance for the therapeutic application of QS blockers.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/microbiologia , Evasão da Resposta Imune , Leucócitos/imunologia , Percepção de Quorum/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Animais , Proteínas de Bactérias/genética , Infecções Relacionadas a Cateter/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Mutação , Percepção de Quorum/genética , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia , Transativadores/genética
17.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651356

RESUMO

Human respiratory syncytial virus (RSV) is a major pediatric respiratory pathogen. The attachment (G) and fusion (F) glycoproteins are major neutralization and protective antigens. RSV G is expressed as membrane-anchored (mG) and -secreted (sG) forms, both containing a central fractalkine-like CX3C motif. The CX3C motif and sG are thought to interfere with host immune responses and have been suggested to be omitted from a vaccine. We used a chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express RSV wild-type (wt) G and modified forms, including sG alone, mG alone, mutants with ablated CX3C, and G with enhanced packaging into vector virions. In hamsters, these viruses replicated to similar titers. When assayed with a complement-enhanced neutralization assay in Vero cells, sG did not reduce the serum RSV- or PIV3-neutralizing antibody (NAb) responses, whereas ablating CX3C drastically reduced the RSV NAb response. Protective efficacy against RSV challenge was not reduced by sG but was strongly dependent on the CX3C motif. In ciliated human airway epithelial (HAE) cells, NAbs induced by wt G, but not by wt F, completely blocked RSV infection in the absence of added complement. This activity was dependent on the integrity of the CX3C motif. In hamsters, the rB/HPIV3 expressing wt G conferred better protection against RSV challenge than that expressing wt F. Codon optimization of the wt G further increased its immunogenicity and protective efficacy. This study showed that ablation of the CX3C motif or sG in an RSV vaccine, as has been suggested previously, would be ill advised.IMPORTANCE Human RSV is the leading viral cause of severe pediatric respiratory illness. An RSV vaccine is not yet available. The RSV attachment protein G is an important protective and neutralization antigen. G contains a conserved fractalkine-like CX3C motif and is expressed in mG and sG forms. sG and the CX3C motif are thought to interfere with host immune responses, but this remains poorly characterized. Here, we used an attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express various modified forms of RSV G. We demonstrated that strong antibody and protective responses could be induced by G alone, and that this was highly dependent on the integrity of the CX3C motif. There was no evidence that sG or the CX3C motif impaired immune responses against RSV G or the rB/HPIV3 vector. rB/HPIV3 expressing wt RSV G provides a bivalent vaccine against RSV and HPIV3.


Assuntos
Vetores Genéticos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Respirovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Criança , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Mesocricetus , Infecções por Vírus Respiratório Sincicial/virologia , Células Vero , Proteínas Virais de Fusão/imunologia , Vírion/imunologia , Replicação Viral/imunologia
18.
Nat Immunol ; 20(2): 218-231, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643268

RESUMO

Regulatory T cells (Treg cells) can activate multiple suppressive mechanisms in vitro after activation via the T cell antigen receptor, resulting in antigen-independent suppression. However, it remains unclear whether similar pathways operate in vivo. Here we found that antigen-specific Treg cells activated by dendritic cells (DCs) pulsed with two antigens suppressed conventional naive T cells (Tnaive cells) specific for both cognate antigens and non-cognate antigens in vitro but suppressed only Tnaive cells specific for cognate antigen in vivo. Antigen-specific Treg cells formed strong interactions with DCs, resulting in selective inhibition of the binding of Tnaive cells to cognate antigen yet allowing bystander Tnaive cell access. Strong binding resulted in the removal of the complex of cognate peptide and major histocompatibility complex class II (pMHCII) from the DC surface, reducing the capacity of DCs to present antigen. The enhanced binding of Treg cells to DCs, coupled with their capacity to deplete pMHCII, represents a novel pathway for Treg cell-mediated suppression and may be a mechanism by which Treg cells maintain immune homeostasis.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Tolerância Imunológica/imunologia , Linfócitos T Reguladores/imunologia , Animais , Efeito Espectador/imunologia , Células Cultivadas , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/imunologia , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo
19.
J Immunol ; 201(10): 2879-2884, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315139

RESUMO

Early secretion of IL-12 by mouse dendritic cells (DCs) instructs T cells to make IFN-γ. However, only activated, but not naive T cells are able to license DCs for IL-12 production. We hypothesized that it might be due to different levels of CD40L expression on the surface of these cells, as CD40 signals are required for IL-12 production. Using quantitative cell-free systems incorporating CD40L in lipid bilayers combined with total internal reflection fluorescence microscopy and flow cytometry, we show that as low as ∼200 CD40L molecules/µm2 in combination with IL-4 is sufficient to induce IL-12 production by DCs. Remarkably, CD40L alone is adequate to induce IL-23 secretion by DCs. Thus, although activated T cells have somewhat higher levels of CD40L, it is the combination of CD40L and the cytokines they secrete that licenses DCs and influences the effector class of the immune response.


Assuntos
Ligante de CD40/imunologia , Células Dendríticas/imunologia , Interleucina-12/biossíntese , Interleucina-23/biossíntese , Ativação Linfocitária/imunologia , Animais , Células Dendríticas/metabolismo , Interleucina-12/imunologia , Interleucina-23/imunologia , Camundongos , Camundongos Transgênicos
20.
PLoS Pathog ; 14(3): e1006916, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29538454

RESUMO

Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro.


Assuntos
Antígenos de Neoplasias/metabolismo , Carcinoma Hepatocelular/virologia , Moléculas de Adesão Celular/metabolismo , Claudina-1/metabolismo , Hepacivirus/patogenicidade , Hepatite C/virologia , Neoplasias Hepáticas/virologia , Ocludina/metabolismo , Antígenos de Neoplasias/genética , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/metabolismo , Moléculas de Adesão Celular/genética , Claudina-1/genética , Regulação para Baixo , Hepatite C/complicações , Hepatite C/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/metabolismo , Ocludina/genética , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA