Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 11(1): 3981, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769997

RESUMO

Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors.


Assuntos
Pleiotropia Genética , Estudo de Associação Genômica Ampla , Neoplasias da Glândula Tireoide/genética , Tireotropina/genética , Loci Gênicos , Predisposição Genética para Doença , Bócio/genética , Humanos , Análise da Randomização Mendeliana , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Mapeamento Físico do Cromossomo , Prevalência , Fatores de Risco , Tireoglobulina/genética , Neoplasias da Glândula Tireoide/epidemiologia
3.
J Am Chem Soc ; 140(44): 14887-14902, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30362717

RESUMO

ETHE1 is a member of a growing subclass of nonheme Fe enzymes that catalyzes transformations of sulfur-containing substrates without a cofactor. ETHE1 dioxygenates glutathione persulfide (GSSH) to glutathione (GSH) and sulfite in a reaction which is similar to that of cysteine dioxygenase (CDO), but with monodentate (vs bidentate) substrate coordination and a 2-His/1-Asp (vs 3-His) ligand set. In this study, we demonstrate that GSS- binds directly to the iron active site, causing coordination unsaturation to prime the site for O2 activation. Nitrosyl complexes without and with GSSH were generated and spectroscopically characterized as unreactive analogues for the invoked ferric superoxide intermediate. New spectral features from persulfide binding to the FeIII include the appearance of a low-energy FeIII ligand field transition, an energy shift of a NO- to FeIII CT transition, and two new GSS- to FeIII CT transitions. Time-dependent density functional theory calculations were used to simulate the experimental spectra to determine the persulfide orientation. Correlation of these spectral features with those of monodentate cysteine binding in isopenicillin N synthase (IPNS) shows that the persulfide is a poorer donor but still results in an equivalent frontier molecular orbital for reactivity. The ETHE1 persulfide dioxygenation reaction coordinate was calculated, and while the initial steps are similar to the reaction coordinate of CDO, an additional hydrolysis step is required in ETHE1 to break the S-S bond. Unlike ETHE1 and CDO, which both oxygenate sulfur, IPNS oxidizes sulfur through an initial H atom abstraction. Thus, factors that determine oxygenase vs oxidase reactivity were evaluated. In general, sulfur oxygenation is thermodynamically favored and has a lower barrier for reactivity. However, in IPNS, second-sphere residues in the active site pocket constrain the substrate, raising the barrier for sulfur oxygenation relative to oxidation via H atom abstraction.


Assuntos
Cisteína Dioxigenase/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Oxigênio/metabolismo , Enxofre/metabolismo , Dicroísmo Circular , Cisteína Dioxigenase/química , Teoria da Densidade Funcional , Humanos , Proteínas Mitocondriais/química , Conformação Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Oxirredução , Oxigênio/química , Enxofre/química
4.
J Biol Chem ; 293(32): 12429-12439, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980601

RESUMO

Hydrogen sulfide (H2S) is a signaling molecule with many beneficial effects. However, its cellular concentration is strictly regulated to avoid toxicity. Persulfide dioxygenase (PDO or ETHE1) is a mononuclear non-heme iron-containing protein in the sulfide oxidation pathway catalyzing the conversion of GSH persulfide (GSSH) to sulfite and GSH. PDO mutations result in the autosomal-recessive disorder ethylmalonic encephalopathy (EE). Here, we developed γ-glutamyl-homocysteinyl-glycine (GHcySH), in which the cysteinyl moiety in GSH is substituted with homocysteine, as a mechanism-based PDO inhibitor. Human PDO used GHcySH as an alternative substrate and converted it to GHcy-SO2H, mimicking GS-SO2H, the putative oxygenated intermediate formed with the natural substrate. Because GHcy-SO2H contains a C-S bond rather than an S-S bond in GS-SO2H, it failed to undergo the final hydrolysis step in the catalytic cycle, leading to PDO inhibition. We also characterized the biochemical penalties incurred by the L55P, T136A, C161Y, and R163W mutations reported in EE patients. The variants displayed lower iron content (1.4-11-fold) and lower thermal stability (1.2-1.7-fold) than WT PDO. They also exhibited varying degrees of catalytic impairment; the kcat/Km values for R163W, L55P, and C161Y PDOs were 18-, 42-, and 65-fold lower, respectively, and the T136A variant was most affected, with a 200-fold lower kcat/Km Like WT enzyme, these variants were inhibited by GHcySH. This study provides the first characterization of an intermediate in the PDO-catalyzed reaction and reports on deficits associated with EE-linked mutations that are distal from the active site.


Assuntos
Glicina/farmacologia , Sulfeto de Hidrogênio/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inibidores , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Sulfetos/farmacologia , Domínio Catalítico , Humanos , Proteínas Mitocondriais/genética , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Oxirredução , Ligação Proteica , Conformação Proteica
5.
J Biol Chem ; 292(34): 14026-14038, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28684420

RESUMO

Hydrogen sulfide (H2S) is a signaling molecule that is toxic at elevated concentrations. In eukaryotes, it is cleared via a mitochondrial sulfide oxidation pathway, which comprises sulfide quinone oxidoreductase, persulfide dioxygenase (PDO), rhodanese, and sulfite oxidase and converts H2S to thiosulfate and sulfate. Natural fusions between the non-heme iron containing PDO and rhodanese, a thiol sulfurtransferase, exist in some bacteria. However, little is known about the role of the PDO-rhodanese fusion (PRF) proteins in sulfur metabolism. Herein, we report the kinetic properties and the crystal structure of a PRF from the Gram-negative endophytic bacterium Burkholderia phytofirmans The crystal structures of wild-type PRF and a sulfurtransferase-inactivated C314S mutant with and without glutathione were determined at 1.8, 2.4, and 2.7 Å resolution, respectively. We found that the two active sites are distant and do not show evidence of direct communication. The B. phytofirmans PRF exhibited robust PDO activity and preferentially catalyzed sulfur transfer in the direction of thiosulfate to sulfite and glutathione persulfide; sulfur transfer in the reverse direction was detectable only under limited turnover conditions. Together with the kinetic data, our bioinformatics analysis reveals that B. phytofirmans PRF is poised to metabolize thiosulfate to sulfite in a sulfur assimilation pathway rather than in sulfide stress response as seen, for example, with the Staphylococcus aureus PRF or sulfide oxidation and disposal as observed with the homologous mammalian proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderiaceae/enzimologia , Modelos Moleculares , Proteínas Mutantes Quiméricas/metabolismo , Quinona Redutases/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Cisteína/química , Dissulfetos/metabolismo , Estabilidade Enzimática , Glutationa/análogos & derivados , Glutationa/química , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Quinona Redutases/química , Quinona Redutases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/genética , Tiossulfatos/metabolismo
6.
J Biol Chem ; 292(32): 13143-13153, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28637872

RESUMO

Hydrogen sulfide (H2S) regulates various physiological processes, including neuronal activity, vascular tone, inflammation, and energy metabolism. Moreover, H2S elicits cytoprotective effects against stressors in various cellular models of injury. However, the mechanism of the signaling pathways mediating the cytoprotective functions of H2S is not well understood. We previously uncovered a heme-dependent metabolic switch for transient induction of H2S production in the trans-sulfuration pathway. Here, we demonstrate that increased endogenous H2S production or its exogenous administration modulates major components of the integrated stress response promoting a metabolic state primed for stress response. We show that H2S transiently increases phosphorylation of eukaryotic translation initiation factor 2 (eIF2α) resulting in inhibition of general protein synthesis. The H2S-induced increase in eIF2α phosphorylation was mediated at least in part by inhibition of protein phosphatase-1 (PP1c) via persulfidation at Cys-127. Overexpression of a PP1c cysteine mutant (C127S-PP1c) abrogated the H2S effect on eIF2α phosphorylation. Our data support a model in which H2S exerts its cytoprotective effect on ISR signaling by inducing a transient adaptive reprogramming of global mRNA translation. Although a transient increase in endogenous H2S production provides cytoprotection, its chronic increase such as in cystathionine ß-synthase deficiency may pose a problem.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteína Fosfatase 1/metabolismo , Fator 4 Ativador da Transcrição/genética , Alostase , Substituição de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Cisteína/química , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Mutação , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 1/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Transdução de Sinais
7.
J Biol Chem ; 291(32): 16418-16423, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27365395

RESUMO

Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine ß-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Heme/metabolismo , Sulfeto de Hidrogênio/metabolismo , Animais , Cistationina beta-Sintase/biossíntese , Cistationina beta-Sintase/genética , Cistationina gama-Liase/biossíntese , Cistationina gama-Liase/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Células HEK293 , Heme/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Homocisteína/genética , Homocisteína/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
9.
Elife ; 4: e10067, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26595448

RESUMO

The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic ß cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic ß cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism.


Assuntos
Cisteína/metabolismo , Regulação da Expressão Gênica , Sulfeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Processamento de Proteína Pós-Traducional , Estresse Fisiológico , Animais , Biologia Computacional , Camundongos Endogâmicos C57BL , Proteoma/análise
10.
Methods Enzymol ; 554: 189-200, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25725523

RESUMO

H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine ß-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxygenase, rhodanese, and sulfite oxidase. The products of the sulfide oxidation pathway are thiosulfate and sulfate. Assays for enzymes involved in the production and oxidative clearance of sulfide to thiosulfate are described in this chapter.


Assuntos
Cistationina beta-Sintase/química , Cistationina gama-Liase/química , Sulfeto de Hidrogênio/química , Animais , Dioxigenases/química , Ensaios Enzimáticos , Humanos , Cinética , Oxirredução , Sulfurtransferases/química , Tiossulfato Sulfurtransferase/química
11.
J Nutr ; 144(10): 1501-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25165392

RESUMO

BACKGROUND: Pyridoxal 5'-phosphate (PLP) functions as a coenzyme in many cellular processes including one-carbon metabolism and the interconversion and catabolism of amino acids. PLP-dependent enzymes, cystathionine ß-synthase and cystathionine γ-lyase, function in transsulfuration but also have been implicated in the production of the endogenous gaseous signaling molecule hydrogen sulfide (H2S) concurrent with the formation of the biomarkers lanthionine and homolanthionine. OBJECTIVE: Our objective was to determine if H2S production and concurrent biomarker production is affected by vitamin B-6 restriction in a cell culture model. METHODS: We used cultured human hepatoma cells and evaluated static intracellular profiles of amino acids and in vivo kinetics of H2S biomarker formation. Cells were cultured for 6 wk in media containing concentrations of pyridoxal that represented severe vitamin B-6 deficiency (15 nmol/L pyridoxal), marginal deficiency (56 nmol/L pyridoxal), adequacy (210 nmol/L pyridoxal), and standard medium formulation providing a supraphysiologic pyridoxal concentration (1800 nmol/L pyridoxal). RESULTS: Intracellular concentrations of lanthionine and homolanthionine in cells cultured at 15 nmol/L pyridoxal were 50% lower (P < 0.002) and 47% lower (P < 0.0255), respectively, than observed in cells cultured at 1800 nmol/L pyridoxal. Extracellular homocysteine and cysteine were 58% and 46% higher, respectively, in severely deficient cells than in adequate cells (P < 0.002). Fractional synthesis rates of lanthionine (P < 0.01) and homolanthionine (P < 0.006) were lower at 15 and 56 nmol/L pyridoxal than at both higher pyridoxal concentrations. The rate of homocysteine remethylation and the fractional rate of homocysteine production from methionine were not affected by vitamin B-6 restriction. In vitro studies of cell lysates using direct measurement of H2S also had a reduced extent of H2S production in the 2 lower vitamin B-6 conditions. CONCLUSION: In view of the physiologic roles of H2S, these results suggest a mechanism that may be involved in the association between human vitamin B-6 inadequacy and its effects on human health.


Assuntos
Biomarcadores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Deficiência de Vitamina B 6/fisiopatologia , Vitamina B 6/farmacologia , Alanina/análogos & derivados , Alanina/biossíntese , Carcinoma Hepatocelular/metabolismo , Cisteína/biossíntese , Células Hep G2 , Homocisteína/biossíntese , Humanos , Sulfeto de Hidrogênio/antagonistas & inibidores , Modelos Lineares , Neoplasias Hepáticas/metabolismo , Fosfato de Piridoxal/metabolismo , Sulfetos
12.
PLoS One ; 9(1): e85544, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416422

RESUMO

Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ß-synthase (CBS) as a new player in nitrite reduction with implications for the nitrite-dependent control of H2S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (Fe(II)-NO) CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR) and nitrite. Formation of Fe(II)-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H2S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H2S biology.


Assuntos
Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Nitrito Redutases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Heme/metabolismo , Humanos , Ferro/metabolismo , Modelos Biológicos , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredução/efeitos dos fármacos , Fosfato de Piridoxal/metabolismo , Substâncias Redutoras/farmacologia
13.
Antioxid Redox Signal ; 20(5): 770-82, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-23600844

RESUMO

SIGNIFICANCE: Hydrogen sulfide (H2S), produced by the desulfuration of cysteine or homocysteine, functions as a signaling molecule in an array of physiological processes including regulation of vascular tone, the cellular stress response, apoptosis, and inflammation. RECENT ADVANCES: The low steady-state levels of H2S in mammalian cells have been recently shown to reflect a balance between its synthesis and its clearance. The subversion of enzymes in the cytoplasmic trans-sulfuration pathway for producing H2S from cysteine and/or homocysteine versus producing cysteine from homocysteine, presents an interesting regulatory problem. CRITICAL ISSUES: It is not known under what conditions the enzymes operate in the canonical trans-sulfuration pathway and how their specificity is switched to catalyze the alternative H2S-producing reactions. Similarly, it is not known if and whether the mitochondrial enzymes, which oxidize sulfide and persulfide (or sulfane sulfur), are regulated to increase or decrease H2S or sulfane-sulfur pools. FUTURE DIRECTIONS: In this review, we focus on the enzymology of H2S homeostasis and discuss H2S-based signaling via persulfidation and thionitrous acid.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Transdução de Sinais , Sulfurtransferases/metabolismo , Animais , Domínio Catalítico , Cistationina beta-Sintase/química , Cistationina gama-Liase/química , Humanos , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Oxirredução , Sulfetos/metabolismo , Sulfurtransferases/química
14.
Biochemistry ; 52(26): 4553-62, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23790103

RESUMO

Cystathionine ß-synthase (CBS) catalyzes the condensation of homocysteine with serine or cysteine to form cystathionine and water or hydrogen sulfide (H2S), respectively. In addition to pyridoxal phosphate, human CBS has a heme cofactor with cysteine and histidine as ligands. While Fe(III)-CBS is inert to exogenous ligands, Fe(II)-CBS can be reversibly inhibited by carbon monoxide (CO) and reoxidized by O2 to yield superoxide radical. In this study, we have examined the kinetics of Fe(II)CO-CBS formation and reoxidation. Reduction of Fe(III)-CBS by dithionite showed a square root dependence on concentration, indicating that the reductant species was the sulfur dioxide radical anion (SO2(•-)) that exists in rapid equilibrium with S2O4(2-). Formation of Fe(II)CO-CBS from Fe(II)-CBS and 1 mM CO occurred with a rate constant of (3.1 ± 0.4) × 10(-3) s(-1) (pH 7.4, 25 °C). The reaction of Fe(III)-CBS with the reduced form of the flavoprotein methionine synthase reductase in the presence of CO and NADPH resulted in its reduction and carbonylation to form Fe(II)CO-CBS. Fe(II)-CBS was formed as an intermediate with a rate constant of (9.3 ± 2.5) × 10(2) M(-1) s(-1). Reoxidation of Fe(II)CO-CBS by O2 was multiphasic. The major phase showed a hyperbolic dependence on O2 concentration. Although H2S is a product of the CBS reaction and a potential heme ligand, we did not find evidence of an effect of exogenous H2S on activity or heme binding. Reversible reduction of CBS by a physiologically relevant oxidoreductase is consistent with a regulatory role for the heme and could constitute a mechanism for cross talk among the CO, H2S, and superoxide signaling pathways.


Assuntos
Monóxido de Carbono/química , Cistationina beta-Sintase/química , Heme/química , Oxigênio/metabolismo , Monóxido de Carbono/metabolismo , Cistationina beta-Sintase/metabolismo , Cisteína/metabolismo , Heme/metabolismo , Histidina/metabolismo , Humanos , Cinética , Ligantes , Oxigênio/química , Ligação Proteica , Carbonilação Proteica , Transdução de Sinais , Análise Espectral Raman , Dióxido de Enxofre/química , Dióxido de Enxofre/metabolismo , Superóxidos/química
15.
J Biol Chem ; 287(53): 44561-7, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23144459

RESUMO

Hydrogen sulfide (H(2)S) is a recently described endogenously produced gaseous signaling molecule that influences various cellular processes in the central nervous system, cardiovascular system, and gastrointestinal tract. The biogenesis of H(2)S involves the cytoplasmic transsulfuration enzymes, cystathionine ß-synthase and γ-cystathionase, whereas its catabolism occurs in the mitochondrion and couples to the energy-yielding electron transfer chain. Low steady-state levels of H(2)S appear to be controlled primarily by efficient oxygen-dependent catabolism via sulfide quinone oxidoreductase, persulfide dioxygenase (ETHE1), rhodanese, and sulfite oxidase. Mutations in the persulfide dioxgenase, i.e. ETHE1, result in ethylmalonic encephalopathy, an inborn error of metabolism. In this study, we report the biochemical characterization and kinetic properties of human persulfide dioxygenase and describe the biochemical penalties associated with two patient mutations, T152I and D196N. Steady-state kinetic analysis reveals that the T152I mutation results in a 3-fold lower activity, which is correlated with a 3-fold lower iron content compared with the wild-type enzyme. The D196N mutation results in a 2-fold higher K(m) for the substrate, glutathione persulfide.


Assuntos
Encefalopatias Metabólicas Congênitas/enzimologia , Sulfeto de Hidrogênio/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Púrpura/enzimologia , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/metabolismo , Humanos , Cinética , Proteínas Mitocondriais/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Púrpura/genética , Púrpura/metabolismo
16.
Antioxid Redox Signal ; 17(1): 22-31, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22229551

RESUMO

AIMS: Hydrogen sulfide (H(2)S) is a signaling molecule, which influences many physiological processes. While H(2)S is produced and degraded in many cell types, the kinetics of its turnover in different tissues has not been reported. In this study, we have assessed the rates of H(2)S production in murine liver, kidney, and brain homogenates at pH 7.4, 37°C, and at physiologically relevant cysteine concentrations. We have also studied the kinetics of H(2)S clearance by liver, kidney, and brain homogenates under aerobic and anaerobic conditions. RESULTS: We find that the rate of H(2)S production by these tissue homogenates is considerably higher than background rates observed in the absence of exogenous substrates. An exponential decay of H(2)S with time is observed and, as expected, is significantly faster under aerobic conditions. The half-life for H(2)S under aerobic conditions is 2.0, 2.8, and 10.0 min with liver, kidney, and brain homogenate, respectively. Western-blot analysis of the sulfur dioxygenase, ETHE1, involved in H(2)S catabolism, demonstrates higher steady-state protein levels in liver and kidney versus brain. INNOVATION: By combining experimental and simulation approaches, we demonstrate high rates of tissue H(2)S turnover and provide estimates of steady-state H(2)S levels. CONCLUSION: Our study reveals that tissues maintain a high metabolic flux of sulfur through H(2)S, providing a rationale for how H(2)S levels can be rapidly regulated.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Animais , Encéfalo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C
17.
Proc Natl Acad Sci U S A ; 108(40): 16831-6, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21930912

RESUMO

The mechanisms through which dietary restriction enhances health and longevity in diverse species are unclear. The transsulfuration pathway (TSP) is a highly conserved mechanism for metabolizing the sulfur-containing amino acids, methionine and cysteine. Here we show that Drosophila cystathionine ß-synthase (dCBS), which catalyzes the rate-determining step in the TSP, is a positive regulator of lifespan in Drosophila and that the pathway is required for the effects of diet restriction on animal physiology and lifespan. dCBS activity was up-regulated in flies exposed to reduced nutrient conditions, and ubiquitous or neuron-specific transgenic overexpression of dCBS enhanced longevity in fully fed animals. Inhibition of the TSP abrogated the changes in lifespan, adiposity, and protein content that normally accompany diet restriction. RNAi-mediated knockdown of dCBS also limited lifespan extension by diet. Diet restriction reduced levels of protein translation in Drosophila, and we show that this is largely caused by increased metabolic commitment of methionine cycle intermediates to transsulfuration. However, dietary supplementation of methionine restored normal levels of protein synthesis to restricted animals without affecting lifespan, indicating that global reductions in translation alone are not required for diet-restriction longevity. Our results indicate a mechanism by which dietary restriction influences physiology and aging.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Cistationina beta-Sintase/metabolismo , Cisteína/metabolismo , Drosophila/fisiologia , Ingestão de Energia/fisiologia , Longevidade/fisiologia , Metionina/metabolismo , Animais , Western Blotting , Restrição Calórica , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Biologia Computacional , Cistationina beta-Sintase/genética , Primers do DNA/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutationa/metabolismo , Longevidade/genética , Reação em Cadeia da Polimerase , Biossíntese de Proteínas/fisiologia , Interferência de RNA , Triglicerídeos/metabolismo
18.
Biochemistry ; 50(39): 8261-3, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21875066

RESUMO

Human CBS is a PLP-dependent enzyme that clears homocysteine, gates the flow of sulfur into glutathione, and contributes to the biogenesis of H(2)S. The presence of a heme cofactor in CBS is enigmatic, and its conversion from the ferric- to ferrous-CO state inhibits enzyme activity. The low heme redox potential (-350 mV) has raised questions about the feasibility of the ferrous-CO state forming under physiological conditions. Herein, we provide the first evidence of reversible inhibition of CBS by CO in the presence of a human flavoprotein and NADPH. These data provide a mechanism for cross talk between two gas-signaling systems, CO and H(2)S, via heme-mediated allosteric regulation of CBS.


Assuntos
Monóxido de Carbono/metabolismo , Cistationina beta-Sintase/metabolismo , Heme/metabolismo , Sulfeto de Hidrogênio/metabolismo , Oxirredutases/metabolismo , Regulação Alostérica , Cistationina beta-Sintase/antagonistas & inibidores , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Flavoproteínas , Humanos , Oxirredução
19.
Antioxid Redox Signal ; 15(2): 363-72, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21254839

RESUMO

The enzymes of the transsulfuration pathway, cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE), are important for the endogenous production of hydrogen sulfide (H(2)S), a gaseous signaling molecule. The relative contributions of CBS and CSE to H(2)S generation in different tissues are not known. In this study, we report quantification of CBS and CSE in murine liver and kidney and their contribution to H(2)S generation in these tissues and in brain at saturating substrate concentrations. We show that CBS protein levels are significantly lower than those of CSE; 60-fold and 20-fold in liver and kidney, respectively. Each enzyme is more abundant in liver compared with kidney, twofold and sixfold for CBS and CSE, respectively. At high substrate concentrations (20 mM each cysteine and homocysteine), the capacity for liver H(2)S production is approximately equal for CBS and CSE, whereas in kidney and brain, CBS constitutes the major source of H(2)S, accounting for ∼80% and ∼95%, respectively, of the total output. At physiologically relevant concentrations of substrate, and adjusting for the differences in CBS versus CSE levels, we estimate that CBS accounts for only 3% of H(2)S production by the transsulfuration pathway enzymes in liver.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Enxofre/metabolismo , Animais , Western Blotting , Masculino , Camundongos , Camundongos Endogâmicos BALB C
20.
Proc Natl Acad Sci U S A ; 107(49): 20958-63, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21081698

RESUMO

The catalytic potential for H(2)S biogenesis and homocysteine clearance converge at the active site of cystathionine ß-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes ß-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H(2)S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 Å) and an aminoacrylate intermediate (1.55 Å) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory "energy-sensing" CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.


Assuntos
Cistationina beta-Sintase/química , Proteínas de Drosophila/química , Animais , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cistationina beta-Sintase/metabolismo , Lisina , Estrutura Terciária de Proteína , S-Adenosilmetionina , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA