Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Mol Cell Proteomics ; 22(3): 100503, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682716

RESUMO

Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.


Assuntos
Proteína Quinase Ativada por DNA , Leucemia Mieloide Aguda , Animais , Camundongos , Apoptose , Linhagem Celular Tumoral , Dasatinibe , DNA , Proteína Quinase Ativada por DNA/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases , Serina , Transdução de Sinais , Treonina , Serina-Treonina Quinases TOR , Tirosina
3.
Clin Proteomics ; 19(1): 48, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536316

RESUMO

Global high-throughput phosphoproteomic profiling is increasingly being applied to cancer specimens to identify the oncogenic signaling cascades responsible for promoting disease initiation and disease progression; pathways that are often invisible to genomics analysis. Hence, phosphoproteomic profiling has enormous potential to inform and improve individualized anti-cancer treatment strategies. However, to achieve the adequate phosphoproteomic depth and coverage necessary to identify the activated, and hence, targetable kinases responsible for driving oncogenic signaling pathways, affinity phosphopeptide enrichment techniques are required and often coupled with offline high-pressure liquid chromatographic (HPLC) separation prior to nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS). These complex and time-consuming procedures, limit the utility of phosphoproteomics for the analysis of individual cancer patient specimens in real-time, and restrict phosphoproteomics to specialized laboratories often outside of the clinical setting. To address these limitations, here we have optimized a new protocol, phospho-heavy-labeled-spiketide FAIMS Stepped-CV DDA (pHASED), that employs online phosphoproteome deconvolution using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and internal phosphopeptide standards to provide accurate label-free quantitation (LFQ) data in real-time. Compared with traditional single-shot LFQ phosphoproteomics workflows, pHASED provided increased phosphoproteomic depth and coverage (phosphopeptides = 4617 pHASED, 2789 LFQ), whilst eliminating the variability associated with offline prefractionation. pHASED was optimized using tyrosine kinase inhibitor (sorafenib) resistant isogenic FLT3-mutant acute myeloid leukemia (AML) cell line models. Bioinformatic analysis identified differential activation of the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) pathway, responsible for sensing and repairing DNA damage in sorafenib-resistant AML cell line models, thereby uncovering a potential therapeutic opportunity. Herein, we have optimized a rapid, reproducible, and flexible protocol for the characterization of complex cancer phosphoproteomes in real-time, a step towards the implementation of phosphoproteomics in the clinic to aid in the selection of anti-cancer therapies for patients.

4.
Reproduction ; 162(5): 375-384, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34423782

RESUMO

This study aimed to determine if the (pro)renin receptor (ATP6AP2) changes the cellular profile of choriocarcinomas from cytotrophoblast cells to terminally syncytialised cells and ascertain whether this impacts the invasive potential of choriocarcinoma cells. Additionally, we aimed to confirm that FURIN and/or site 1 protease (MBTPS1) cleave soluble ATP6AP2 (sATP6AP2) in BeWo choriocarcinoma cells and determine whether sATP6AP2 levels reflect the cellular profile of choriocarcinomas. BeWo choriocarcinoma cells were treated with ATP6AP2 siRNA, FURIN siRNA, DEC-RVKR-CMK (to inhibit FURIN activity), or PF 429242 (to inhibit MBTPS1 activity). Cells were also treated with forskolin, to induce syncytialisation, or vehicle and incubated for 48 h before collection of cells and supernatants. Syncytialisation was assessed by measuring hCG secretion (by ELISA) and E-cadherin protein levels (by immunoblot and immunocytochemistry). Cellular invasion was measured using the xCELLigence real-time cell analysis system and secreted sATP6AP2 levels measured by ELISA. Forskolin successfully induced syncytialisation and significantly increased both BeWo choriocarcinoma cell invasion (P < 0.0001) and sATP6AP2 levels (P = 0.02). Treatment with ATP6AP2 siRNA significantly inhibited syncytialisation (decreased hCG secretion (P = 0.005), the percent of nuclei in syncytia (P = 0.05)), forskolin-induced invasion (P = 0.046), and sATP6AP2 levels (P < 0.0001). FURIN siRNA and DEC-RVKR-CMK significantly decreased sATP6AP2 levels (both P < 0.0001). In conclusion, ATP6AP2 is important for syncytialisation of choriocarcinoma cells and thereby limits choriocarcinoma cell invasion. We postulate that sATP6AP2 could be used as a biomarker measuring the invasive potential of choriocarcinomas. Additionally, we confirmed that FURIN, not MBTPS1, cleaves sATP6AP2 in BeWo cells, but other proteases (inhibited by DEC-RVKR-CMK) may also be involved.


Assuntos
Coriocarcinoma , Receptores de Superfície Celular , Renina , Neoplasias Uterinas , ATPases Vacuolares Próton-Translocadoras , Coriocarcinoma/metabolismo , Colforsina/metabolismo , Colforsina/farmacologia , Feminino , Humanos , Gravidez , Receptores de Superfície Celular/metabolismo , Renina/metabolismo , Trofoblastos/metabolismo , Neoplasias Uterinas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
7.
Breast Cancer Res Treat ; 166(1): 117-131, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28744751

RESUMO

PURPOSE: Protein phosphatase 2A (PP2A) is a family of serine/threonine phosphatases that regulate multiple cellular signalling pathways involved in proliferation, survival and apoptosis. PP2A inhibition occurs in many cancers and is considered a tumour suppressor. Deletion/downregulation of PP2A genes has been observed in breast tumours, but the functional role of PP2A subunit loss in breast cancer has not been investigated. METHODS: PP2A subunit expression was examined by immunohistochemistry in human breast tumours, and by qPCR and immunoblotting in breast cancer cell lines. PP2A subunits were inhibited by shRNA, and mutant PP2A genes overexpressed, in MCF10A and MCF7 cells, and growth and signalling in standard and three-dimensional cultures were assessed. RESULTS: Expression of PP2A-Aα, PP2A-Bα and PP2A-B'α subunits was significantly lower in primary human breast tumours and lymph node metastases, compared to normal mammary tissue. PP2A-Aα and the regulatory subunits PP2A-Bα, -Bδ and -B'γ were also reduced in breast cancer cell lines compared to normal mammary epithelial cells. Functionally, shRNA-mediated knockdown of PP2A-Bα, -B'α and -B'γ, but not PP2A-Aα, induced hyper-proliferation and large multilobular acini in MCF10A 3D cultures, characterised by activation of ERK. Expression of a breast cancer-associated PP2A-A mutant, PP2A-Aα-E64G, which inhibits binding of regulatory subunits to the PP2A core, induced a similar hyper-proliferative phenotype. Knockdown of PP2A-Bα also induced hyper-proliferation in MCF7 breast cancer cells. CONCLUSION: These results suggest that loss of specific PP2A regulatory subunits is functionally important in breast tumourigenesis, and support strategies to enhance PP2A activity as a therapeutic approach in breast cancer.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Proteína Fosfatase 2/genética , Subunidades Proteicas/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Células Epiteliais , MAP Quinases Reguladas por Sinal Extracelular , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Mutação , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
BMC Cancer ; 14: 509, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25012362

RESUMO

BACKGROUND: Tetraspanins are transmembrane proteins that serve as scaffolds for multiprotein complexes containing, for example, integrins, growth factor receptors and matrix metalloproteases, and modify their functions in cell adhesion, migration and transmembrane signaling. CD151 is part of the tetraspanin family and it forms tight complexes with ß1 and ß4 integrins, both of which have been shown to be required for tumorigenesis and/or metastasis in transgenic mouse models of breast cancer. High levels of the tetraspanin CD151 have been linked to poor patient outcome in several human cancers including breast cancer. In addition, CD151 has been implicated as a promoter of tumor angiogenesis and metastasis in various model systems. METHODS: Here we investigated the effect of Cd151 deletion on mammary tumorigenesis by crossing Cd151-deficient mice with a spontaneously metastasising transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV). RESULTS: Cd151 deletion did not affect the normal development and differentiation of the mammary gland. While there was a trend towards delayed tumor onset in Cd151-/- PyMT mice compared to Cd151+/+ PyMT littermate controls, this result was only approaching significance (Log-rank test P-value =0.0536). Interestingly, Cd151 deletion resulted in significantly reduced numbers and size of primary tumors but did not appear to affect the number or size of metastases in the MMTV/PyMT mice. Intriguingly, no differences in the expression of markers of cell proliferation, apoptosis and blood vessel density was observed in the primary tumors. CONCLUSION: The findings from this study provide additional evidence that CD151 acts to enhance tumor formation initiated by a range of oncogenes and strongly support its relevance as a potential therapeutic target to delay breast cancer progression.


Assuntos
Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Tetraspanina 24/genética , Animais , Antígenos Transformantes de Poliomavirus/genética , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Tetraspanina 24/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA