Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 878136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734580

RESUMO

SUMOylation is one of the post-translational modifications that have recently been described as a key regulator of various cellular, nuclear, metabolic, and immunological processes. The process of SUMOylation involves the modification of one or more lysine residues of target proteins by conjugation of a ubiquitin-like, small polypeptide known as SUMO for their degradation, stability, transcriptional regulation, cellular localization, and transport. Herein, for the first time, we report the involvement of the host SUMOylation pathway in the process of infection of Leishmania donovani, a causative agent of visceral leishmaniasis. Our data revealed that infection of L. donovani to the host macrophages leads to upregulation of SUMOylation pathway genes and downregulation of a deSUMOylating gene, SENP1. Further, to confirm the effect of the host SUMOylation on the growth of Leishmania, the genes associated with the SUMOylation pathway were silenced and parasite load was analyzed. The knockdown of the SUMOylation pathway led to a reduction in parasitic load, suggesting the role of the host SUMOylation pathway in the disease progression and parasite survival. Owing to the effect of the SUMOylation pathway in autophagy, we further investigated the status of host autophagy to gain mechanistic insights into how SUMOylation mediates the regulation of growth of L. donovani. Knockdown of genes of host SUMOylation pathway led to the reduction of the expression levels of host autophagy markers while promoting autophagosome-lysosome fusion, suggesting SUMOylation-mediated autophagy in terms of autophagy initiation and autophagy maturation during parasite survival. The levels of reactive oxygen species (ROS) generation, nitric oxide (NO) production, and pro-inflammatory cytokines were also elevated upon the knockdown of genes of the host SUMOylation pathway during L. donovani infection. This indicates the involvement of the SUMOylation pathway in the modulation of protective immune responses and thus favoring parasite survival. Taken together, the results of this study indicate the hijacking of the host SUMOylation pathway by L. donovani toward the suppression of host immune responses and facilitation of host autophagy to potentially facilitate its survival. Targeting of SUMOylation pathway can provide a starting point for the design and development of novel therapeutic interventions to combat leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Parasitos , Animais , Imunidade , Macrófagos , Sumoilação
2.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859024

RESUMO

Apicomplexan parasites, through their motor machinery, produce the required propulsive force critical for host cell-entry. The conserved components of this so-called glideosome machinery are myosin A and myosin A Tail Interacting Protein (MTIP). MTIP tethers myosin A to the inner membrane complex of the parasite through 20 amino acid-long C-terminal end of myosin A that makes direct contacts with MTIP, allowing the invasion of Plasmodium falciparum in erythrocytes. Here, we discovered through screening a peptide library, a de-novo peptide ZA1 that binds the myosin A tail domain. We demonstrated that ZA1 bound strongly to myosin A tail and was able to disrupt the native myosin A tail MTIP complex both in vitro and in vivo. We then showed that a shortened peptide derived from ZA1, named ZA1S, was able to bind myosin A and block parasite invasion. Overall, our study identified a novel anti-malarial peptide that could be used in combination with other antimalarials for blocking the invasion of Plasmodium falciparum.


Assuntos
Antimaláricos/farmacologia , Proteínas de Membrana/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Peptídeos/farmacologia , Plasmodium falciparum/crescimento & desenvolvimento , Motivos de Aminoácidos , Antimaláricos/química , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Eritrócitos/parasitologia , Ensaios de Triagem em Larga Escala , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Complexos Multiproteicos/efeitos dos fármacos , Miosina não Muscular Tipo IIA/química , Biblioteca de Peptídeos , Peptídeos/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
3.
Appl Microbiol Biotechnol ; 98(5): 2041-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23817664

RESUMO

Tetralene and indene compounds have shown inhibitory activity against human pathogen, Mycobacterium tuberculosis. Their potential use as antistaphylococcal agent against drug-resistant Staphylococcus aureus has not been explored so far. We determined in vitro antistaphylococcal activity and mechanism of action of these compounds as sortase A inhibitors through in silico analysis followed by biological assays. Tetralene and indene series were tested against S. aureus strains MTCC96, MRSA, and VA30. Three compounds showed significant reduction in MIC in both wild-type and drug-resistant S. aureus strains. In silico absorption, distribution, metabolism, excretion, and toxicity analysis of identified leads and cytotoxicity testing with colorimetric method using Vero and WRL-68 cell lines showed no significant cytotoxic effects. Molecular docking of these molecules with sortase A (PDB: 2KID) showed H-bond interaction with functional site residue Arg197 of sortase A. Sortase A inhibition assay was developed by expressing SrtA∆N from S. aureus strain MTCC96. Tetralene and indene compounds were found to have sortase A inhibitory potential. S. aureus strain MTCC96 treated with these compounds showed surface-sorting inhibition of fibronectin-binding protein and reduction in adherence to host extracellular matrix protein, fibronectin. 1-Chloro, 2-formyl, 6-methoxy, 1-tetralene (Tet-5), 1,5-dichloro, 2-formyl, 1-indene (Tet-20) and 1-chloro, 2-formyl, 5,6-methylenedioxy, and 1-indene (Tet-21) exhibited antistaphylococcal activity along with sortase A inhibition. The results also indicate the possible role of these leads in other reactions essential for cell viability.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indenos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Aminoaciltransferases/genética , Animais , Antibacterianos/toxicidade , Proteínas de Bactérias/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Cisteína Endopeptidases/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Inibidores Enzimáticos/toxicidade , Humanos , Indenos/toxicidade , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA , Staphylococcus aureus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA