Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(5): 2432-2440, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38495899

RESUMO

Many long-lasting insecticidal bed nets for protection against disease vectors consist of poly(ethylene) fibers in which insecticide is incorporated during manufacture. Insecticide molecules diffuse from within the supersaturated polymers to surfaces where they become bioavailable to insects and often crystallize, a process known as blooming. Recent studies revealed that contact insecticides can be highly polymorphic. Moreover, insecticidal activity is polymorph-dependent, with forms having a higher crystal free energy yielding faster insect knockdown and mortality. Consequently, the crystallographic characterization of insecticide crystals that form on fibers is critical to understanding net function and improving net performance. Structural characterization of insecticide crystals on bed net fiber surfaces, let alone their polymorphs, has been elusive owing to the minute size of the crystals, however. Using the highly polymorphous compound ROY (5-methyl-2-[(2-nitrophenyl)-amino]thiophene-3-carbonitrile) as a proxy for insecticide crystallization, we investigated blooming and crystal formation on the surface of extruded poly(ethylene) fibers containing ROY. The blooming rates, tracked from the time of extrusion, were determined by UV-vis spectroscopy after successive washes. Six crystalline polymorphs (of the 13 known) were observed on poly(ethylene) fiber surfaces, and they were identified and characterized by Raman microscopy, scanning electron microscopy, and 3D electron diffraction. These observations reveal that the crystallization and phase behavior of polymorphs forming on poly(ethylene) fibers is complex and dynamic. The characterization of blooming and microcrystals underscores the importance of bed net crystallography for the optimization of bed net performance.

2.
Acc Chem Res ; 55(4): 516-525, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35088591

RESUMO

Aberrant crystallization within the human body can lead to several disease states or adverse outcomes, yet much remains to be understood about the critical stages leading to these events, which can include crystal nucleation and growth, crystal aggregation, and the adhesion of crystals to cells. Kidney stones, which are aggregates of single crystals with physiological origins, are particularly illustrative of pathological crystallization, with 10% of the U.S. population experiencing at least one stone occurrence in their lifetimes. The human record of kidney stones is more than 2000 years old, as noted by Hippocrates in his renowned oath and much later by Robert Hooke in his treatise Micrographia. William Hyde Wollaston, who was a physician, chemist, physicist, and crystallographer, was fascinated with stones, leading him to discover an unusual stone that he described in 1810 as cystic oxide, later corrected to cystine. Despite this long history, however, a fundamental understanding of the stages of stone formation and the rational design of therapies for stone prevention have remained elusive.This Account reviews discoveries and advances from our laboratories that have unraveled the complex crystal growth mechanisms of l-cystine, which forms l-cystine kidney stones in at least 20 000 individuals in the U.S. alone. Although l-cystine stones affect fewer individuals than common calcium oxalate stones, they are usually larger, recur more frequently, and are more likely to cause chronic kidney disease. Real-time in situ atomic force microscopy (AFM) reveals that the crystal growth of hexagonal l-cystine is characterized by a complex mechanism in which six interlaced anisotropic spirals grow synchronously, emanating from a single screw dislocation to generate a micromorphology with the appearance of stacked hexagonal islands. In contrast, proximal heterochiral dislocations produce features that appear to be spirals but actually are closed loops, akin to a Frank-Read source. These unusual and aesthetic growth patterns can be explained by the coincidence of the dislocation Burgers vector and the crystallographic 61 screw axis. Inhibiting l-cystine crystal growth is key to preventing stone formation. Decades of studies of "tailor-made additives", which are imposter molecules that closely resemble the solute and bind to crystal faces through molecular recognition, have demonstrated their effects on crystal properties such as morphology and polymorphism. The ability to visualize crystal growth in real time by AFM enables quantitative measurements of step velocities and, by extension, the effect of prospective inhibitors on growth rates, which can then be used to deduce inhibition mechanisms. Investigations with a wide range of prospective inhibitors revealed the importance of precise molecular recognition for binding l-cystine imposters to crystal sites, which results in step pinning and the inhibition of step advancement as well as the growth of bulk crystals. Moreover, select inhibitors of crystal growth, measured in vitro, reduce or eliminate stone formation in knockout mouse models of cystinuria, promising a new pathway to l-cystine stone prevention. These observations have wide-ranging implications for the design of therapies based on tailor-made additives for diseases associated with aberrant crystallization, from disease-related stones to "xenostones" that form in vivo because of the crystallization of low-solubility therapeutic agents such as antiretroviral agents.


Assuntos
Cistinúria , Cálculos Renais , Animais , Cristalização , Cistina/química , Cistina/metabolismo , Cistina/uso terapêutico , Cistinúria/complicações , Cistinúria/tratamento farmacológico , Cistinúria/metabolismo , Rim , Cálculos Renais/química , Cálculos Renais/etiologia , Cálculos Renais/prevenção & controle , Masculino , Camundongos
3.
Proc Natl Acad Sci U S A ; 110(43): 17195-8, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101507

RESUMO

The theory of dislocation-controlled crystal growth identifies a continuous spiral step with an emergent lattice displacement on a crystal surface; a mechanistic corollary is that closely spaced, oppositely winding spirals merge to form concentric loops. In situ atomic force microscopy of step propagation on pathological L-cystine crystals did indeed show spirals and islands with step heights of one lattice displacement. We show by analysis of the rates of growth of smaller steps only one molecule high that the major morphological spirals and loops are actually consequences of the bunching of the smaller steps. The morphology of the bunched steps actually inverts the predictions of the theory: Spirals arise from pairs of dislocations, loops from single dislocations. Only through numerical simulation of the growth is it revealed how normal growth of anisotropic layers of molecules within the highly symmetrical crystals can conspire to create features in apparent violation of the classic theory.


Assuntos
Cistina/química , Microscopia de Força Atômica/métodos , Modelos Moleculares , Conformação Molecular , Simulação por Computador , Cristalização
4.
Micron ; 37(4): 324-38, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16406217

RESUMO

New developments in optical microscopy are discussed with relevance to the imaging of amyloid plaques that are pathognomonic of a variety of degenerative disorders. We present the results of linear birefringence, linear dichroism, and circular dichroism imaging of Congo red stained plaques ex vivo and in vitro. A new technique for measuring rapid changes in linear anisotropies is introduced. The application of polarimetric imaging as demonstrated here can be extended to broader pathological practice since polarimetric measurements are sensitive to transformations in tissues that are specific disease signatures.


Assuntos
Amiloide/química , Amiloidose/diagnóstico , Amiloidose/metabolismo , Birrefringência , Química Encefálica , Dicroísmo Circular , Vermelho Congo , Humanos , Técnicas In Vitro , Microscopia de Polarização , Placa Amiloide/química , Coloração e Rotulagem
5.
Proc Natl Acad Sci U S A ; 100(26): 15294-8, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14668440

RESUMO

New advances in polarized light microscopy were used to image Congo red-stained cerebral amyloidosis in sharp relief. The rotating-polarizer method was used to separate the optical effects of transmission, linear birefringence, extinction, linear dichroism, and orientation of the electric dipole transition moments and to display them as false-color maps. These effects are typically convolved in an ordinary polarized light microscope. In this way, we show that the amyloid deposits in Alzheimer's disease plaques contain structurally disordered centers, providing clues to mechanisms of crystallization of amyloid in vivo. Comparisons are made with plaques from tissues of subjects having Down's syndrome and a prion disease. In plaques characteristic of each disease, the Congo red molecules are oriented radially. The optical orientation in amyloid deposited in blood vessels from subjects having cerebral amyloid angiopathy was 90 degrees out of phase from that in the plaques, suggesting that the fibrils run tangentially with respect to the circumference of the blood vessels. Our result supports an early model in which Congo red molecules are aligned along the long fiber axis and is in contrast to the most recent binding models that are based on computation. This investigation illustrates that the latest methods for the optical analysis of heterogeneous substances are useful for in situ study of amyloid.


Assuntos
Doença de Alzheimer/patologia , Neuropatias Amiloides/patologia , Encéfalo/patologia , Idoso , Idoso de 80 Anos ou mais , Birrefringência , Dicroísmo Circular , Corantes , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Placa Amiloide/patologia , Mudanças Depois da Morte , Telencéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA