Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 32(10): 855-870, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35925813

RESUMO

Molecular biomarkers measure discrete components of biological processes that can contribute to disorders when impaired. Great interest exists in discovering early cancer biomarkers to improve outcomes. Biomarkers represented in a standardized data model, integrated with multi-omics data, may improve the understanding and use of novel biomarkers such as glycans and glycoconjugates. Among altered components in tumorigenesis, N-glycans exhibit substantial biomarker potential, when analyzed with their protein carriers. However, such data are distributed across publications and databases of diverse formats, which hamper their use in research and clinical application. Mass spectrometry measures of 50 N-glycans on 7 serum proteins in liver disease were integrated (as a panel) into a cancer biomarker data model, providing a unique identifier, standard nomenclature, links to glycan resources, and accession and ontology annotations to standard protein, gene, disease, and biomarker information. Data provenance was documented with a standardized United States Food and Drug Administration-supported BioCompute Object. Using the biomarker data model allows the capture of granular information, such as glycans with different levels of abundance in cirrhosis, hepatocellular carcinoma, and transplant groups. Such representation in a standardized data model harmonizes glycomics data in a unified framework, making glycan-protein biomarker data exploration more available to investigators and to other data resources. The biomarker data model we describe can be used by researchers to describe their novel glycan and glycoconjugate biomarkers; it can integrate N-glycan biomarker data with multi-source biomedical data and can foster discovery and insight within a unified data framework for glycan biomarker representation, thereby making the data FAIR (Findable, Accessible, Interoperable, Reusable) (https://www.go-fair.org/fair-principles/).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Glicômica/métodos , Humanos , Neoplasias Hepáticas/diagnóstico , Polissacarídeos/química
2.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015823

RESUMO

In response to the COVID-19 outbreak, scientists and medical researchers are capturing a wide range of host responses, symptoms and lingering postrecovery problems within the human population. These variable clinical manifestations suggest differences in influential factors, such as innate and adaptive host immunity, existing or underlying health conditions, comorbidities, genetics and other factors-compounding the complexity of COVID-19 pathobiology and potential biomarkers associated with the disease, as they become available. The heterogeneous data pose challenges for efficient extrapolation of information into clinical applications. We have curated 145 COVID-19 biomarkers by developing a novel cross-cutting disease biomarker data model that allows integration and evaluation of biomarkers in patients with comorbidities. Most biomarkers are related to the immune (SAA, TNF-∝ and IP-10) or coagulation (D-dimer, antithrombin and VWF) cascades, suggesting complex vascular pathobiology of the disease. Furthermore, we observe commonality with established cancer biomarkers (ACE2, IL-6, IL-4 and IL-2) as well as biomarkers for metabolic syndrome and diabetes (CRP, NLR and LDL). We explore these trends as we put forth a COVID-19 biomarker resource (https://data.oncomx.org/covid19) that will help researchers and diagnosticians alike.

3.
Database (Oxford) ; 20212021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784373

RESUMO

Developments in high-throughput sequencing (HTS) result in an exponential increase in the amount of data generated by sequencing experiments, an increase in the complexity of bioinformatics analysis reporting and an increase in the types of data generated. These increases in volume, diversity and complexity of the data generated and their analysis expose the necessity of a structured and standardized reporting template. BioCompute Objects (BCOs) provide the requisite support for communication of HTS data analysis that includes support for workflow, as well as data, curation, accessibility and reproducibility of communication. BCOs standardize how researchers report provenance and the established verification and validation protocols used in workflows while also being robust enough to convey content integration or curation in knowledge bases. BCOs that encapsulate tools, platforms, datasets and workflows are FAIR (findable, accessible, interoperable and reusable) compliant. Providing operational workflow and data information facilitates interoperability between platforms and incorporation of future dataset within an HTS analysis for use within industrial, academic and regulatory settings. Cloud-based platforms, including High-performance Integrated Virtual Environment (HIVE), Cancer Genomics Cloud (CGC) and Galaxy, support BCO generation for users. Given the 100K+ userbase between these platforms, BioCompute can be leveraged for workflow documentation. In this paper, we report the availability of platform-dependent and platform-independent BCO tools: HIVE BCO App, CGC BCO App, Galaxy BCO API Extension and BCO Portal. Community engagement was utilized to evaluate tool efficacy. We demonstrate that these tools further advance BCO creation from text editing approaches used in earlier releases of the standard. Moreover, we demonstrate that integrating BCO generation within existing analysis platforms greatly streamlines BCO creation while capturing granular workflow details. We also demonstrate that the BCO tools described in the paper provide an approach to solve the long-standing challenge of standardizing workflow descriptions that are both human and machine readable while accommodating manual and automated curation with evidence tagging. Database URL:  https://www.biocomputeobject.org/resources.


Assuntos
Biologia Computacional , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reprodutibilidade dos Testes , Software , Fluxo de Trabalho
4.
JCO Clin Cancer Inform ; 4: 210-220, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32142370

RESUMO

PURPOSE: The purpose of OncoMX1 knowledgebase development was to integrate cancer biomarker and relevant data types into a meta-portal, enabling the research of cancer biomarkers side by side with other pertinent multidimensional data types. METHODS: Cancer mutation, cancer differential expression, cancer expression specificity, healthy gene expression from human and mouse, literature mining for cancer mutation and cancer expression, and biomarker data were integrated, unified by relevant biomedical ontologies, and subjected to rule-based automated quality control before ingestion into the database. RESULTS: OncoMX provides integrated data encompassing more than 1,000 unique biomarker entries (939 from the Early Detection Research Network [EDRN] and 96 from the US Food and Drug Administration) mapped to 20,576 genes that have either mutation or differential expression in cancer. Sentences reporting mutation or differential expression in cancer were extracted from more than 40,000 publications, and healthy gene expression data with samples mapped to organs are available for both human genes and their mouse orthologs. CONCLUSION: OncoMX has prioritized user feedback as a means of guiding development priorities. By mapping to and integrating data from several cancer genomics resources, it is hoped that OncoMX will foster a dynamic engagement between bioinformaticians and cancer biomarker researchers. This engagement should culminate in a community resource that substantially improves the ability and efficiency of exploring cancer biomarker data and related multidimensional data.


Assuntos
Biomarcadores Tumorais/análise , Biologia Computacional/métodos , Mineração de Dados/métodos , Bases de Dados Genéticas/normas , Bases de Conhecimento , Neoplasias/diagnóstico , Software , Animais , Ontologias Biológicas , Humanos , Camundongos , Neoplasias/terapia , Interface Usuário-Computador
5.
PLoS One ; 14(4): e0213770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30934003

RESUMO

Human endogenous retroviruses (HERVs) have been investigated for potential links with human cancer. However, the distribution of somatic nucleotide variations in HERV elements has not been explored in detail. This study aims to identify HERV elements with an over-representation of somatic mutations (hot spots) in cancer patients. Four HERV elements with mutation hotspots were identified that overlap with exons of four human protein coding genes. These hotspots were identified based on the significant over-representation (p<8.62e-4) of non-synonymous single-nucleotide variations (nsSNVs). These genes are TNN (HERV-9/LTR12), OR4K15 (HERV-IP10F/LTR10F), ZNF99 (HERV-W/HERV17/LTR17), and KIR2DL1 (MST/MaLR). In an effort to identify mutations that effect survival, all nsSNVs were further evaluated and it was found that kidney cancer patients with mutation C2270G in ZNF99 have a significantly lower survival rate (hazard ratio = 2.6) compared to those without it. Among HERV elements in the human non-protein coding regions, we found 788 HERVs with significantly elevated numbers of somatic single-nucleotide variations (SNVs) (p<1.60e-5). From this category the top three HERV elements with significantly over-represented SNVs are HERV-H/LTR7, HERV-9/LTR12 and HERV-L/MLT2. Majority of the SNVs in these 788 HERV elements are located in three DNA functional groups: long non-coding RNAs (lncRNAs) (60%), introns (22.2%) and transcriptional factor binding sites (TFBS) (14.8%). This study provides a list of mutational hotspots in HERVs, which could potentially be used as biomarkers and therapeutic targets.


Assuntos
Retrovirus Endógenos/genética , Genoma Humano/genética , Neoplasias Renais/genética , Polimorfismo de Nucleotídeo Único/genética , Éxons/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Íntrons/genética , Neoplasias Renais/patologia , Mutação , RNA Longo não Codificante/genética , Receptores KIR2DL1/genética , Análise de Sobrevida , Tenascina/genética , Sequências Repetidas Terminais/genética
6.
Comput Biol Med ; 103: 183-197, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384176

RESUMO

microRNAs (miRNAs) functioning in gene silencing have been associated with cancer progression. However, common abnormal miRNA expression patterns and their potential roles in cancer have not yet been evaluated. To account for individual differences between patients, we retrieved miRNA sequencing data for 575 patients with both tumor and adjacent non-tumorous tissues from 14 cancer types from The Cancer Genome Atlas (TCGA). We then performed differential expression analysis using DESeq2 and edgeR. Results showed that cancer types can be grouped based on the distribution of miRNAs with different expression patterns between tumor and non-tumor samples. We found 81 significantly differentially expressed miRNAs (SDEmiRNAs) in a single cancer. We also found 21 key SDEmiRNAs (nine over-expressed and 12 under-expressed) associated with at least eight cancers each and enriched in more than 60% of patients per cancer, including four newly identified SDEmiRNAs (hsa-mir-4746, hsa-mir-3648, hsa-mir-3687, and hsa-mir-1269a). The downstream effects of these 21 SDEmiRNAs on cellular function were evaluated through enrichment and pathway analysis of 7186 protein-coding gene targets mined from literature reports of differential expression of miRNAs in cancer. This analysis enables identification of SDEmiRNA functional similarity in cell proliferation control across a wide range of cancers, and assembly of common regulatory networks over cancer-related pathways. These findings were validated by construction of a regulatory network in the PI3K pathway. This study provides evidence for the value of further analysis of SDEmiRNAs as potential biomarkers and therapeutic targets for cancer diagnosis and treatment.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , MicroRNAs/genética , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , MicroRNAs/fisiologia , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/fisiopatologia
7.
Nucleic Acids Res ; 46(D1): D1128-D1136, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30053270

RESUMO

Single-nucleotide variation and gene expression of disease samples represent important resources for biomarker discovery. Many databases have been built to host and make available such data to the community, but these databases are frequently limited in scope and/or content. BioMuta, a database of cancer-associated single-nucleotide variations, and BioXpress, a database of cancer-associated differentially expressed genes and microRNAs, differ from other disease-associated variation and expression databases primarily through the aggregation of data across many studies into a single source with a unified representation and annotation of functional attributes. Early versions of these resources were initiated by pilot funding for specific research applications, but newly awarded funds have enabled hardening of these databases to production-level quality and will allow for sustained development of these resources for the next few years. Because both resources were developed using a similar methodology of integration, curation, unification, and annotation, we present BioMuta and BioXpress as allied databases that will facilitate a more comprehensive view of gene associations in cancer. BioMuta and BioXpress are hosted on the High-performance Integrated Virtual Environment (HIVE) server at the George Washington University at https://hive.biochemistry.gwu.edu/biomuta and https://hive.biochemistry.gwu.edu/bioxpress, respectively.


Assuntos
Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Bases de Conhecimento , Mutação , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA