Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 327(2): F314-F326, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38932694

RESUMO

Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging, and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 min) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), hypoxic and heat shock factors (hypoxia-inducible factor-1α, heat shock factor-1, and heat shock protein-27), proinflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1), and fibrotic markers (transforming growth factor-ß, connective tissue growth factor, and fibronectin) promptly after PA. Moreover, a machine learning model was identified through random forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic, heat shock, proinflammatory, and profibrotic response after renal IR injury compared with controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. In addition, the parameters identified through random forest analysis provide a robust foundation for future biomarker research in the context of PA.NEW & NOTEWORTHY This article demonstrates that perinatal asphyxia leads to subclinical kidney injury that permanently increases renal susceptibility to subsequent ischemic injury. We identified major molecular pathways involved in perinatal asphyxia-induced renal complications, highlighting potential targets of therapeutic approaches. In addition, random forest analysis revealed a model that classifies perinatal asphyxia with 95.5% accuracy that may provide a strong foundation for further biomarker research. These findings underscore the importance of multiorgan follow-up for perinatal asphyxia-affected patients.


Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Rim , Ratos Wistar , Traumatismo por Reperfusão , Animais , Masculino , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Rim/patologia , Rim/metabolismo , Fibrose , Asfixia Neonatal/metabolismo , Asfixia Neonatal/complicações , Asfixia Neonatal/patologia , Animais Recém-Nascidos , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Citocinas/metabolismo , Fatores Etários , Mediadores da Inflamação/metabolismo
2.
Front Mol Neurosci ; 13: 570640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281550

RESUMO

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a neurodegenerative disorder caused by loss-of-function mutations in the cystatin B (CSTB) gene. Progression of the clinical symptoms in EPM1 patients, including stimulus-sensitive myoclonus, tonic-clonic seizures, and ataxia, are well described. However, the cellular dysfunction during the presymptomatic phase that precedes the disease onset is not understood. CSTB deficiency leads to alterations in GABAergic signaling, and causes early neuroinflammation followed by progressive neurodegeneration in brains of a mouse model, manifesting as progressive myoclonus and ataxia. Here, we report the first proteome atlas from cerebellar synaptosomes of presymptomatic Cstb-deficient mice, and propose that early mitochondrial dysfunction is important to the pathogenesis of altered synaptic function in EPM1. A decreased sodium- and chloride dependent GABA transporter 1 (GAT-1) abundance was noted in synaptosomes with CSTB deficiency, but no functional difference was seen between the two genotypes in electrophysiological experiments with pharmacological block of GAT-1. Collectively, our findings provide novel insights into the early onset and pathogenesis of CSTB deficiency, and reveal greater complexity to the molecular pathogenesis of EPM1.

3.
Cereb Cortex ; 26(12): 4574-4589, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26428952

RESUMO

Work on rodents demonstrated that steep upregulation of KCC2, a neuron-specific Cl- extruder of cation-chloride cotransporter (CCC) family, commences in supraspinal structures at around birth, leading to establishment of hyperpolarizing GABAergic responses. We describe spatiotemporal expression profiles of the entire CCC family in human brain. KCC2 mRNA was observed already at 10th postconceptional week (PCW) in amygdala, cerebellum, and thalamus. KCC2-immunoreactive (KCC2-ir) neurons were abundant in subplate at 18 PCW. By 25 PCW, numerous subplate and cortical plate neurons became KCC2-ir. The mRNA expression profiles of α- and ß-isoforms of Na-K ATPase, which fuels cation-chloride cotransport, as well of tropomyosin receptor kinase B (TrkB), which promotes developmental upregulation of KCC2, were consistent with data from studies on rodents about their interactions with KCC2. Thus, in human brain, expression of KCC2 and its functionally associated proteins begins in early fetal period. Our work facilitates translation of results on CCC functions from animal studies to human and refutes the view that poor efficacy of anticonvulsants in the term human neonate is attributable to the lack of KCC2. We propose that perinatally low threshold for activation of Ca2+-dependent protease calpain renders neonates susceptible to downregulation of KCC2 by traumatic events, such as perinatal hypoxia ischemia.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Simportadores/metabolismo , Adulto , Idoso de 80 Anos ou mais , Encéfalo/citologia , Criança , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Glicoproteínas de Membrana/metabolismo , Análise em Microsséries , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Receptor trkB/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Adulto Jovem , Cotransportadores de K e Cl-
4.
Glia ; 62(4): 608-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24482245

RESUMO

Network activity in the brain is associated with a transient increase in extracellular K(+) concentration. The excess K(+) is removed from the extracellular space by mechanisms proposed to involve Kir4.1-mediated spatial buffering, the Na(+)/K(+)/2Cl(-) cotransporter 1 (NKCC1), and/or Na(+)/K(+)-ATPase activity. Their individual contribution to [K(+)]o management has been of extended controversy. This study aimed, by several complementary approaches, to delineate the transport characteristics of Kir4.1, NKCC1, and Na(+)/K(+)-ATPase and to resolve their involvement in clearance of extracellular K(+) transients. Primary cultures of rat astrocytes displayed robust NKCC1 activity with [K(+)]o increases above basal levels. Increased [K(+)]o produced NKCC1-mediated swelling of cultured astrocytes and NKCC1 could thereby potentially act as a mechanism of K(+) clearance while concomitantly mediate the associated shrinkage of the extracellular space. In rat hippocampal slices, inhibition of NKCC1 failed to affect the rate of K(+) removal from the extracellular space while Kir4.1 enacted its spatial buffering only during a local [K(+)]o increase. In contrast, inhibition of the different isoforms of Na(+)/K(+)-ATPase reduced post-stimulus clearance of K(+) transients. The astrocyte-characteristic α2ß2 subunit composition of Na(+)/K(+)-ATPase, when expressed in Xenopus oocytes, displayed a K(+) affinity and voltage-sensitivity that would render this subunit composition specifically geared for controlling [K(+)]o during neuronal activity. In rat hippocampal slices, simultaneous measurements of the extracellular space volume revealed that neither Kir4.1, NKCC1, nor Na(+)/K(+)-ATPase accounted for the stimulus-induced shrinkage of the extracellular space. Thus, NKCC1 plays no role in activity-induced extracellular K(+) recovery in native hippocampal tissue while Kir4.1 and Na(+)/K(+)-ATPase serve temporally distinct roles.


Assuntos
Hipocampo/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Animais Recém-Nascidos , Bumetanida/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Líquido Extracelular/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Oócitos , Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Xenopus laevis
5.
J Neurosci ; 32(33): 11356-64, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895718

RESUMO

The K-Cl cotransporter KCC2 plays a crucial role in neuronal chloride regulation. In mature central neurons, KCC2 is responsible for the low intracellular Cl(-) concentration ([Cl(-)](i)) that forms the basis for hyperpolarizing GABA(A) receptor-mediated responses. Fast changes in KCC2 function and expression have been observed under various physiological and pathophysiological conditions. Here, we show that the application of protein synthesis inhibitors cycloheximide and emetine to acute rat hippocampal slices have no effect on total KCC2 protein level and K-Cl cotransporter function. Furthermore, blocking constitutive lysosomal degradation with leupeptin did not induce significant changes in KCC2 protein levels. These findings indicate a low basal turnover rate of the total KCC2 protein pool. In the presence of the glutamate receptor agonist NMDA, the total KCC2 protein level decreased to about 30% within 4 h, and this effect was blocked by calpeptin and MDL-28170, inhibitors of the calcium-activated protease calpain. Interictal-like activity induced by incubation of hippocampal slices in an Mg(2+)-free solution led to a fast reduction in KCC2-mediated Cl(-) transport efficacy in CA1 pyramidal neurons, which was paralleled by a decrease in both total and plasmalemmal KCC2 protein. These effects were blocked by the calpain inhibitor MDL-28170. Taken together, these findings show that calpain activation leads to cleavage of KCC2, thereby modulating GABAergic signaling.


Assuntos
Calpaína/metabolismo , Regulação da Expressão Gênica/fisiologia , Células Piramidais/fisiologia , Simportadores/metabolismo , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Ionóforos de Cálcio/farmacologia , Calpaína/farmacologia , Cicloeximida/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Emetina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Técnicas In Vitro , Ionomicina/farmacologia , Leupeptinas/farmacologia , Magnésio/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Inibidores da Síntese de Proteínas/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Valina/análogos & derivados , Valina/farmacologia , Cotransportadores de K e Cl-
6.
Endocrinology ; 144(7): 3031-6, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12810559

RESUMO

In mature central neurons, chloride extrusion mediated by the K-Cl cotransporter KCC2 appears to be largely responsible for the Cl(-) driving force that allows gamma-aminobutyric acid(A) (GABA(A)) receptor activation to trigger a hyperpolarization. In its absence, GABA's effect is typically depolarizing and often excitatory. We examined the colocalization of KCC2 and GnRH in adult male and female mice using a combined in situ hybridization-immunofluorescence procedure. We found that KCC2 was localized to approximately 34% of GnRH neurons. This proportion was similar in females and males. However, females exhibited a marked rostrocaudal gradient of colocalization that was not seen in males. By contrast, KCC2 was localized to nearly all vasopressin neurons of the supraoptic nucleus. These results indicate that a substantial fraction of GnRH neurons may be depolarized and excited by GABA(A) receptor activation throughout life, supporting the existence of functionally heterogeneous subpopulations.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Neurônios/fisiologia , Receptores de GABA-A/genética , Simportadores/genética , Fatores Etários , Animais , Feminino , Imunofluorescência , Expressão Gênica/fisiologia , Hibridização In Situ , Masculino , Camundongos , Neurônios/química , Receptores de GABA-A/análise , Simportadores/análise , Ácido gama-Aminobutírico/fisiologia , Cotransportadores de K e Cl-
7.
Neuroimage ; 15(3): 575-86, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11848700

RESUMO

Hypocapnia induced by hyperventilation (HV) has powerful effects on neuronal excitability and synaptic transmission. We have studied the effect of hyperventilation on the phase-locked oscillatory components of the evoked responses in the human brain. We recorded visually evoked magnetoencephalographic responses before, during, and after voluntary hyperventilation to pattern-reversal checkerboard stimuli. Gamma-band (30-45 Hz) responses phase-locked to the stimuli were generated in the occipital visual cortex. A wavelet-based time-frequency analysis revealed that the gamma responses increased during HV whereas their frequency did not change significantly. A recent in vitro study in the rat hippocampus demonstrated that the stability of spontaneous gamma activity increases during hypocapnia as a result of enhanced GABAergic transmission. To test if a similar mechanism could account for our findings, we performed simulations on a network of 100 Hodgkin-Huxley neurons connected by inhibitory synapses. We found that enhanced GABA(A) transmission, paired with enhanced excitability, can explain the increase in evoked gamma activity without changing the frequency.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais/fisiologia , Hiperventilação/fisiopatologia , Reconhecimento Visual de Modelos/fisiologia , Transmissão Sináptica/fisiologia , Adulto , Feminino , Humanos , Hipóxia Encefálica/fisiopatologia , Interneurônios/fisiologia , Masculino , Inibição Neural/fisiologia , Lobo Occipital/fisiopatologia , Oscilometria , Estimulação Luminosa , Receptores de GABA-A/fisiologia , Córtex Visual/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA