Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antib Ther ; 7(2): 164-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38933534

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, escape coronavirus disease 2019 therapeutics and vaccines, and jeopardize public health. To combat SARS-CoV-2 antigenic escape, we developed a rapid, high-throughput pipeline to discover monospecific VHH antibodies and iteratively develop VHH-Fc-VHH bispecifics capable of neutralizing emerging SARS-CoV-2 variants. By panning VHH single-domain phage libraries against ancestral or beta spike proteins, we discovered high-affinity VHH antibodies with unique target epitopes. Combining two VHHs into a tetravalent bispecific construct conferred broad neutralization activity against multiple variants and was more resistant to antigenic escape than the monospecific antibody alone. Following the rise of the Omicron variant, a VHH in the original bispecific construct was replaced with another VHH discovered against the Omicron BA.1 receptor binding domain; the resulting bispecific exhibited neutralization against both BA.1 and BA.5 sublineage variants. A heavy chain-only tetravalent VHH-Fc-VHH bispecific platform derived from humanized synthetic libraries held a myriad of unique advantages: (i) synthetic preconstructed libraries minimized risk of liabilities and maximized discovery speed, (ii) VHH scaffolds allowed for a modular "plug-and-play" format that could be rapidly iterated upon as variants of concern arose, (iii) natural dimerization of single VHH-Fc-VHH polypeptides allowed for straightforward bispecific production and purification methods, and (iv) multivalent approaches enhanced avidity boosting effects and neutralization potency, and conferred more robust resistance to antigenic escape than monovalent approaches against specific variants. This iterative platform of rapid VHH discovery combined with modular bispecific design holds promise for long-term viral control efforts.

2.
Nat Struct Mol Biol ; 26(3): 204-212, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833785

RESUMO

The structural features that govern broad-spectrum activity of broadly neutralizing anti-ebolavirus antibodies (Abs) outside of the internal fusion loop epitope are currently unknown. Here we describe the structure of a broadly neutralizing human monoclonal Ab (mAb), ADI-15946, which was identified in a human survivor of the 2013-2016 outbreak. The crystal structure of ADI-15946 in complex with cleaved Ebola virus glycoprotein (EBOV GPCL) reveals that binding of the mAb structurally mimics the conserved interaction between the EBOV GP core and its glycan cap ß17-ß18 loop to inhibit infection. Both endosomal proteolysis of EBOV GP and binding of mAb FVM09 displace this loop, thereby increasing exposure of ADI-15946's conserved epitope and enhancing neutralization. Our work also mapped the paratope of ADI-15946, thereby explaining reduced activity against Sudan virus, which enabled rational, structure-guided engineering to enhance binding and neutralization of Sudan virus while retaining the parental activity against EBOV and Bundibugyo virus.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Proteínas Virais de Fusão/imunologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , Sobreviventes
3.
J Virol ; 90(9): 4670-4680, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912619

RESUMO

UNLABELLED: Human bocaviruses (HBoV1 to -4) are emerging pathogens associated with pneumonia and/or diarrhea in young children. Currently, there is no treatment or vaccination, so there is a need to study these pathogens to understand their disease mechanisms on a molecular and structural level for the development of control strategies. Here, we report the structures of six HBoV monoclonal antibody (MAb) fragment complexes, HBoV1-15C6, HBoV2-15C6, HBoV4-15C6, HBoV1-4C2, HBoV1-9G12, and HBoV1-12C1, determined by cryo-electron microscopy and three-dimensional image reconstruction to 18.0- to 8.5-Å resolution. Of these, the 15C6 MAb cross-reacted with HBoV1, HBoV2, and HBoV4, while the 4C2, 12C1, and 9G12 MAbs recognized only HBoV1. Pseudoatomic modeling mapped the 15C6 footprint to the capsid surface DE and HI loops, at the 5-fold axis and the depression surrounding it, respectively, which are conserved motifs in Parvoviridae The footprints for 4C2, 12C1, and 9G12 span the surface loops that assemble portions of the 2-/5-fold wall (a raised surface feature between the 2-fold and 5-fold axes of symmetry) and the shoulder of the 3-fold protrusions. The MAb footprints, cross reactive and strain specific, coincide with regions with high and low sequence/structural identities, respectively, on the capsid surfaces of the HBoVs and identify potential regions for the development of peptide vaccines for these viruses. IMPORTANCE: Human bocaviruses (HBoVs) may cause severe respiratory and gastrointestinal infections in young children. The nonenveloped parvovirus capsid carries determinants of host and tissue tropism, pathogenicity, genome packaging, assembly, and antigenicity important for virus infection. This information is currently unavailable for the HBoVs and other bocaparvoviruses. This study identifies three strain-specific antigenic epitopes on the HBoV1 capsid and a cross-reactive epitope on the HBoV1, HBoV2, and HBoV4 capsids using structures of capsid-antibody complexes determined using cryo-electron microscopy and image reconstruction. This is the first study to report the highly conserved parvovirus DE loop at the 5-fold axis as a determinant of antigenicity. Additionally, knowledge of the strain-specific and conserved antigenic epitopes of the bocaviruses can be instrumental in characterization of the virus life cycle, development of peptide vaccines, and generation of gene delivery vectors for cystic fibrosis given the strict tropism of HBoV1 for human airway epithelial cells.


Assuntos
Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Capsídeo/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Bocavirus Humano/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Reações Cruzadas/imunologia , Microscopia Crioeletrônica , Mapeamento de Epitopos/métodos , Bocavirus Humano/ultraestrutura , Humanos , Imageamento Tridimensional , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Infecções por Parvoviridae/virologia , Ligação Proteica/imunologia , Conformação Proteica
4.
Proc Natl Acad Sci U S A ; 111(44): 15746-51, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331888

RESUMO

The cariogenic bacterium Streptococcus mutans uses adhesin P1 to adhere to tooth surfaces, extracellular matrix components, and other bacteria. A composite model of P1 based on partial crystal structures revealed an unusual complex architecture in which the protein forms an elongated hybrid alpha/polyproline type II helical stalk by folding back on itself to display a globular head at the apex and a globular C-terminal region at the base. The structure of P1's N terminus and the nature of its critical interaction with the C-terminal region remained unknown, however. We have cocrystallized a stable complex of recombinant N- and C-terminal fragments and here describe a previously unidentified topological fold in which these widely discontinuous domains are intimately associated. The structure reveals that the N terminus forms a stabilizing scaffold by wrapping behind the base of P1's elongated stalk and physically "locking" it into place. The structure is stabilized through a highly favorable ΔG(solvation) on complex formation, along with extensive hydrogen bonding. We confirm the functional relevance of this intramolecular interaction using differential scanning calorimetry and circular dichroism to show that disruption of the proper spacing of residues 989-1001 impedes folding and diminishes stability of the full-length molecule, including the stalk. Our findings clarify previously unexplained functional and antigenic properties of P1.


Assuntos
Adesinas Bacterianas/química , Dobramento de Proteína , Streptococcus mutans/química , Adesinas Bacterianas/genética , Cristalografia por Raios X , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Streptococcus mutans/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA