Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35768164

RESUMO

BACKGROUND: Because of the shortage of ideal cell surface antigens, the development of T-cell receptor (TCR)-engineered T cells (TCR-T) that target intracellular antigens such as NY-ESO-1 is a promising approach for treating patients with solid tumors. However, endogenous TCRs in vector-transduced T cells have been suggested to impair cell-surface expression of transduced TCR while generating mispaired TCRs that can become self-reactive. METHODS: We conducted a first-in-human phase I clinical trial with the TCR-transduced T-cell product (TBI-1301) in patients with NY-ESO-1-expressing solid tumors. In manufacturing TCR-T cells, we used a novel affinity-enhanced NY-ESO-1-specific TCR that was transduced by a retroviral vector that enables siRNA (small interfering RNA)-mediated silencing of endogenous TCR. The patients were divided into two cohorts. Cohort 1 was given a dose of 5×108 cells (whole cells including TCR-T cells) preconditioned with 1500 mg/m2 cyclophosphamide. Cohort 2 was given 5× 109 cells preconditioned with 1500 mg/m2 cyclophosphamide. RESULTS: In vitro study showed that both the CD8+ and CD4+ T fractions of TCR-T cells exhibited cytotoxic effects against NY-ESO-1-expressing tumor cells. Three patients and six patients were allocated to cohort 1 and cohort 2, respectively. Three of the six patients who received 5×109 cells showed tumor response, while three patients developed early-onset cytokine release syndrome (CRS). One of the patients developed a grade 3 lung injury associated with the infiltration of the TCR-T cells. No siRNA-related adverse events other than CRS were observed. Cytokines including interleukin 6 I and monocyte chemotactic protein-1/chemokine (C-C motif) ligand (CCL2)increased in the sera of patients with CRS. In vitro analysis showed these cytokines were not secreted from the T cells infused. A significant fraction of the manufactured T cells in patients with CRS was found to express either CD244, CD39, or both at high levels. CONCLUSIONS: The trial showed that endogenous TCR-silenced and affinity-enhanced NY-ESO-1 TCR-T cells were safely administered except for grade 3 lung injury. The TCR-T cell infusion exhibited significant tumor response and early-onset CRS in patients with tumors that express NY-ESO-1 at high levels. The differentiation properties of the manufactured T cells may be prognostic for TCR-T-related CRS. TRIAL REGISTRATION NUMBER: NCT02366546.


Assuntos
Síndrome da Liberação de Citocina , Imunoterapia , Neoplasias , Receptores de Antígenos de Linfócitos T , Linfócitos T , Antígenos de Neoplasias , Ciclofosfamida , Síndrome da Liberação de Citocina/terapia , Citocinas/metabolismo , Humanos , Proteínas de Membrana , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia
2.
Methods Mol Biol ; 2164: 87-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607886

RESUMO

Kupffer cells are the liver-resident macrophages lining the sinusoids and are mostly known for their role of scavengers, as crucial keepers of organ integrity. But due to the many fundamental functions of the liver notably linked to detoxication, metabolism, protein synthesis, or immunology, Kupffer cells are exposed to a dynamic environment and constantly adapt themselves by modulating their gene and protein expressions. In this context, the characterization of these cells at steady-state and upon challenges may be limited by the classical microscopy or flow cytometry which allow for the use of only few selected markers. On the other end, transcriptomic approach, although being very powerful, can be costly and time-consuming. So mass cytometry offers a good compromise, allowing for the monitoring of a representative set of markers (up to 40) in a simple experiment. Herein, we describe a straightforward experimental and analysis workflow for Kupffer cell characterization by mass cytometry.


Assuntos
Citometria de Fluxo/métodos , Células de Kupffer/citologia , Animais , Fígado/citologia , Macrófagos/citologia , Camundongos
3.
Nat Immunol ; 20(7): 852-864, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31213723

RESUMO

Dendritic cells (DC) are currently classified as conventional DCs (cDCs) and plasmacytoid DCs (pDCs). Through a combination of single-cell transcriptomic analysis, mass cytometry, in vivo fate mapping and in vitro clonal assays, here we show that, at the single-cell level, the priming of mouse hematopoietic progenitor cells toward the pDC lineage occurs at the common lymphoid progenitor stage, indicative of early divergence of the pDC and cDC lineages. We found the transcriptional signature of a pDC precursor stage, defined here, in the IL-7Rα+ common lymphoid progenitor population and identified Ly6D, IL-7Rα, CD81 and CD2 as key markers of pDC differentiation, which distinguish pDC precursors from cDC precursors. In conclusion, pDCs developed in the bone marrow from a Ly6DhiCD2hi lymphoid progenitor cell and differentiated independently of the myeloid cDC lineage.


Assuntos
Antígenos Ly/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Citometria de Fluxo , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA