Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 11(1): 9-20, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392007

RESUMO

BACKGROUND: Proton magnetic resonance spectroscopy (MRS) provides a unique opportunity for in vivo measurements of the brain's metabolic profile. Two methods of mainstream data acquisition are compared at 7 T, which provides certain advantages as well as challenges. The two representative methods have seldom been compared in terms of measured metabolite concentrations and different scan times. The current study investigated proton MRS of the posterior cingulate cortex using a semi-localized by adiabatic selective refocusing (sLASER) sequence and a short echo time (TE) stimulated echo acquisition mode (sSTEAM) sequence, and it compared their reliability and repeatability at 7 T using a 32-channel head coil. METHODS: Sixteen healthy subjects were prospectively enrolled and scanned twice with an off-bed interval between scans. The scan parameters for sLASER were a TR/TE of 6.5 s/32 ms and 32 and 48 averages (sLASER×32 and sLASER×48, respectively). The scan parameters for sSTEAM were a TR/TE of 4 s/5 ms and 32, 48, and 64 averages (sSTEAM4×32, sSTEAM4×48, and sSTEAM4×64, respectively) in addition to that with a TR/TE of 8 s/5 ms and 32 averages (sSTEAM8×32). Data were analyzed using LCModel. Metabolites quantified with Cramér-Rao lower bounds (CRLBs) >50% were classified as not detected, and metabolites quantified with mean or median CRLBs ≤20% were included for further analysis. The SNR, CRLBs, coefficient of variation (CV), and metabolite concentrations were statistically compared using the Shapiro-Wilk test, one-way ANOVA, or the Friedman test. RESULTS: The sLASER spectra for N-acetylaspartate + N-acetylaspartylglutamate (tNAA) and glutamate (Glu) had a comparable or higher SNR than sSTEAM spectra. Ten metabolites had lower CRLBs than prefixed thresholds: aspartate (Asp), γ-aminobutyric acid (GABA), glutamine (Gln), Glu, glutathione (GSH), myo-inositol (Ins), taurine (Tau), the total amount of phosphocholine + glycerophosphocholine (tCho), creatine + phosphocreatine (tCr), and tNAA. Performance of the two sequences was satisfactory except for GABA, for which sLASER yielded higher CRLBs (≥18%) than sSTEAM. Some significant differences in CRLBs were noted, but they were ≤2% except for GABA and Gln. Signal averaging significantly lowered CRLBs for some metabolites but only by a small amount. Measurement repeatability as indicated by median CVs was ≤10% for Gln, Glu, Ins, tCho, tCr, and tNAA in all scans, and that for Asp, GABA, GSH, and Tau was ≥10% under some scanning conditions. The CV for GABA according to sLASER was significantly higher than that according to sSTEAM, whereas the CV for Ins was higher according to sSTEAM. An increase in signal averaging contribute little to lower CVs except for Ins. CONCLUSIONS: Both sequences quantified brain metabolites with a high degree of precision and repeatability. They are comparable except for GABA, for which sSTEAM would be a better choice.

2.
NMR Biomed ; 34(5): e4411, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32946145

RESUMO

Spectral editing in in vivo 1 H-MRS provides an effective means to measure low-concentration metabolite signals that cannot be reliably measured by conventional MRS techniques due to signal overlap, for example, γ-aminobutyric acid, glutathione and D-2-hydroxyglutarate. Spectral editing strategies utilize known J-coupling relationships within the metabolite of interest to discriminate their resonances from overlying signals. This consensus recommendation paper provides a brief overview of commonly used homonuclear editing techniques and considerations for data acquisition, processing and quantification. Also, we have listed the experts' recommendations for minimum requirements to achieve adequate spectral editing and reliable quantification. These include selecting the right editing sequence, dealing with frequency drift, handling unwanted coedited resonances, spectral fitting of edited spectra, setting up multicenter clinical trials and recommending sequence parameters to be reported in publications.


Assuntos
Consenso , Espectroscopia de Prótons por Ressonância Magnética , Calibragem , Prova Pericial , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Metaboloma , Córtex Motor/metabolismo , Mutação/genética , Lobo Occipital/metabolismo
3.
J Magn Reson ; 202(2): 259-66, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20005139

RESUMO

Glutathione (GSH) is a powerful antioxidant found inside different kinds of cells, including those of the central nervous system. Detection of GSH in the human brain using (1)H MR spectroscopy is hindered by low concentration and spectral overlap with other metabolites. Previous MRS methods focused mainly on the detection of the cysteine residue (GSH-Cys) via editing schemes. This study focuses on the detection of the glycine residue (GSH-Gly), which is overlapped by glutamate and glutamine (Glx) under physiological pH and temperature. The first goal of the study was to obtain the spectral parameters for characterization of the GSH-Gly signal under physiological conditions. The second goal was to investigate a new method of separating GSH-Gly from Glx in vivo. The characterization of the signal was carried out by utilization of numerical simulations as well as experiments over a wide range of magnetic fields (4.0-14T). The proposed separation scheme utilizes J-difference editing to quantify the Glx contribution to separate it from the GSH-Gly signal. The presented method retains 100% of the GSH-Gly signal. The overall increase in signal to noise ratio of the targeted resonance is calculated to yield a significant SNR improvement compared to previously used methods that target GSH-Cys residue. This allows shorter acquisition times for in vivo human clinical studies.


Assuntos
Glutationa/química , Glicina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Algoritmos , Simulação por Computador , Cisteína/química , Interpretação Estatística de Dados , Campos Eletromagnéticos , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA