RESUMO
Background: The quality of treatment planning for stage III non-small cell lung cancer varies within and between facilities due to the different professions involved in planning. Dose estimation parameters were calculated using a feasibility dose-volume histogram (FDVH) implemented in the treatment planning quality assurance software PlanIQ. This study aimed to evaluate differences in treatment planning between occupations using manual FDVH-referenced treatment planning to identify their characteristics. Materials and methods: The study included ten patients with stage III non-small cell lung cancer, and volumetric-modulated arc therapy was used as the treatment planning technique. Fifteen planners, comprising five radiation oncologists, five medical physicists, and five radiological technologists, developed treatment strategies after referring to the FDVH. Results: Medical physicists had a higher mean dose at D98% of the planning target volume (PTV) and a lower mean dose at D2% of the PTV than those in other occupations. Medical physicists had the lowest irradiation lung volumes (V5 Gy and V13 Gy) compared to other professions, and radiation oncologists had the lowest V20 Gy and mean lung dose. Radiological technologists had the highest irradiation volumes for dose constraints at all indexes on the normal lung volume. Conclusions: The quality of the treatment plans developed in this study differed between occupations due to their background expertise, even when an FDVH was used as a reference. Therefore, discussing and sharing knowledge and treatment planning techniques among professionals is essential to determine the optimal treatment plan for each facility and patient.
RESUMO
This study aimed to investigate the effect of two different image density adjustment parameters on the results of image matching at six degrees of freedom using radiographic images generated by the ExacTrac X-ray system in brain stereotactic radiosurgery (SRS). This study comprised 32 patients who underwent brain SRS at our hospital from January 2020 to December 2020. In this study, (1) the default parameter (an image density parameter between "tissue" and "bone") was an image density parameter for digitally reconstructed radiograph (DRR) generation used at many facilities, and (2) the bone parameter was the steepest contrast parameter used at our hospital. Of the 32 patients, 24 (75%) had a couch angle of 0.5 mm or more in the translational direction or 0.5° or more in the rotational direction, and 10 (31%) had a couch angle of 1.0 mm or more in the translational direction or 1.0° or more in the rotational direction. Among the 131 cases of all couch angles, 46 (35%) cases had a translational direction of 0.5 mm or more or a rotational direction of 0.5° or more, and 15 (11%) had a translational direction of 1.0 mm or more or a rotational direction of 1.0° or more. The results of this study indicate the usefulness of using appropriate DRR parameters for each case, rather than using the default settings. The use of appropriate DRR parameters can lead to accurate position matching results, leading to fewer image-guided radiation therapy shots and a lower imaging dose.
Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico , Humanos , Radiografia , Planejamento da Radioterapia Assistida por Computador , Raios XRESUMO
INTRODUCTION: Software that evaluates the quality of treatment plans (PlanIQTM) has become commercially available in recent years. It includes a feasibility assessment tool that provides the ideal dose volume histogram (DVH) for each organ at risk, based on the ideal dose falloff from the prescribed dose at the target boundary. It is important to investigate whether the PlanIQTM assessment tool (Feasibility DVHTM) can assist treatment planners who have limited to no experience in treatment planning. Therefore, the present study aimed to evaluate this tool's usefulness for improving the quality of treatment plans. MATERIALS & METHODS: This study included 5 patients with prostate cancer. The treatment planners were 2 graduate students, 2 undergraduate students, and one clinical planner. All students were radiological technology and medical physics students with no clinical experience. Two different volumetric-modulated arc therapy (VMAT) plans were developed before and after Feasibility DVHTM. The quality of each treatment plan was evaluated based on a scoring system implemented in PlanIQTM. RESULTS: Of 5 patients included, 4 received improved treatment plans when Feasibility DVHTM was used. Moreover, 4 of 5 treatment planners showed improvement in treatment planning using Feasibility DVHTM. CONCLUSIONS: The findings suggest that using the Feasibility DVHTM tool may improve treatment plans for different planners and patients. However, planners at any level of experience should be trained to check the dose distribution in addition to checking the DVH, which depends on the adequacy of the contours.