Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(11): 100660, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820923

RESUMO

Epithelial ovarian cancer (EOC) is a high-risk cancer presenting with heterogeneous tumors. The high incidence of EOC metastasis from primary tumors to nearby tissues and organs is a major driver of EOC lethality. We used cellular models of spheroid formation and readherence to investigate cellular signaling dynamics in each step toward EOC metastasis. In our system, adherent cells model primary tumors, spheroid formation represents the initiation of metastatic spread, and readherent spheroid cells represent secondary tumors. Proteomic and phosphoproteomic analyses show that spheroid cells are hypoxic and show markers for cell cycle arrest. Aurora kinase B abundance and downstream substrate phosphorylation are significantly reduced in spheroids and readherent cells, explaining their cell cycle arrest phenotype. The proteome of readherent cells is most similar to spheroids, yet greater changes in the phosphoproteome show that spheroid cells stimulate Rho-associated kinase 1 (ROCK1)-mediated signaling, which controls cytoskeletal organization. In spheroids, we found significant phosphorylation of ROCK1 substrates that were reduced in both adherent and readherent cells. Application of the ROCK1-specific inhibitor Y-27632 to spheroids increased the rate of readherence and altered spheroid density. The data suggest ROCK1 inhibition increases EOC metastatic potential. We identified novel pathways controlled by Aurora kinase B and ROCK1 as major drivers of metastatic behavior in EOC cells. Our data show that phosphoproteomic reprogramming precedes proteomic changes that characterize spheroid readherence in EOC metastasis.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/metabolismo , Aurora Quinase B , Proteômica , Esferoides Celulares/metabolismo , Linhagem Celular Tumoral , Metástase Neoplásica , Quinases Associadas a rho
2.
FASEB J ; 35(9): e21788, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34425031

RESUMO

Hypoxia increases fetal hepatic insulin-like growth factor binding protein-1 (IGFBP-1) phosphorylation mediated by mechanistic target of rapamycin (mTOR) inhibition. Whether maternal nutrient restriction (MNR) causes fetal hypoxia remains unclear. We used fetal liver from a baboon (Papio sp.) model of intrauterine growth restriction due to MNR (70% global diet of Control) and liver hepatocellular carcinoma (HepG2) cells as a model for human fetal hepatocytes and tested the hypothesis that mTOR-mediated IGFBP-1 hyperphosphorylation in response to hypoxia requires hypoxia-inducible factor-1α (HIF-1α) and regulated in development and DNA-damage responses-1 (REDD-1) signaling. Western blotting (n = 6) and immunohistochemistry (n = 3) using fetal liver indicated greater expression of HIF-1α, REDD-1 as well as erythropoietin and its receptor, and vascular endothelial growth factor at GD120 (GD185 term) in MNR versus Control. Moreover, treatment of HepG2 cells with hypoxia (1% pO2 ) (n = 3) induced REDD-1, inhibited mTOR complex-1 (mTORC1) activity and increased IGFBP-1 secretion/phosphorylation (Ser101/Ser119/Ser169). HIF-1α inhibition by echinomycin or small interfering RNA silencing prevented the hypoxia-mediated inhibition of mTORC1 and induction of IGFBP-1 secretion/phosphorylation. dimethyloxaloylglycine (DMOG) induced HIF-1α and also REDD-1 expression, inhibited mTORC1 and increased IGFBP-1 secretion/phosphorylation. Induction of HIF-1α (DMOG) and REDD-1 by Compound 3 inhibited mTORC1, increased IGFBP-1 secretion/ phosphorylation and protein kinase PKCα expression. Together, our data demonstrate that HIF-1α induction, increased REDD-1 expression and mTORC1 inhibition represent the mechanistic link between hypoxia and increased IGFBP-1 secretion/phosphorylation. We propose that maternal undernutrition limits fetal oxygen delivery, as demonstrated by increased fetal liver expression of hypoxia-responsive proteins in baboon MNR. These findings have important implications for our understanding of the pathophysiology of restricted fetal growth.


Assuntos
Técnicas de Cultura de Células , Modelos Animais de Doenças , Retardo do Crescimento Fetal/metabolismo , Feto/metabolismo , Hipóxia/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Animais , Eritropoetina/metabolismo , Peso Fetal , Feto/química , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Microscopia de Fluorescência , Tamanho do Órgão , Papio , Fosforilação , Proteína Quinase C-alfa/metabolismo , Receptores da Eritropoetina/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA