Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3068, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321256

RESUMO

Radiation therapy used in the treatment of cancer causes skin damage, and no method of care has been established thus far. Recently, it has become clear that sericin derived from silkworm cocoons has moisturizing and antioxidant functions. In addition, green cocoon-derived sericin, which is rich in flavonoids, may have enhanced functions. However, whether this green cocoon-derived sericin can reduce radiotherapy-induced skin damage is unclear. In the present study, we aimed at establishing care methods to reduce skin cell damage caused by X-irradiation using green cocoon-derived sericin. We investigated its effect on human keratinocytes using lactate dehydrogenase activity to indicate damage reduction. Our results showed that green cocoon-derived sericin reduced cell damage caused by X-irradiation. However, this effect was not observed when cells were treated before X-irradiation or with a sericin derived from white cocoons. In addition, green cocoon-derived sericin decreased the levels of reactive oxygen species and lipid peroxidation. Our results suggest that green cocoon sericin mitigates the damaging effect of X-irradiation on cells, hence presenting potential usefulness in reducing skin damage from radiation therapy and opening new avenues in the care of cancer patients.


Assuntos
Bombyx , Sericinas , Animais , Humanos , Sericinas/farmacologia , Queratinócitos , Pele , Antioxidantes , Seda
2.
Int J Cancer ; 147(11): 3224-3235, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818320

RESUMO

The cystine/glutamate antiporter, system xc- , is essential for the efficient uptake of cystine into cells. Interest in the mechanisms of system xc- function soared with the recognition that system xc- presents the most upstream node of ferroptosis, a recently described form of regulated necrosis relevant for degenerative diseases and cancer. Since targeting system xc- hold the great potential to efficiently combat tumor growth and metastasis of certain tumors, we disrupted the substrate-specific subunit of system xc- , xCT (SLC7A11) in the highly metastatic mouse B16F10 melanoma cell line and assessed the impact on tumor growth and metastasis. Subcutaneous injection of tumor cells into the syngeneic B16F10 mouse melanoma model uncovered a marked decrease in the tumor-forming ability and growth of KO cells compared to control cell lines. Strikingly, the metastatic potential of KO cells was markedly reduced as shown in several in vivo models of experimental and spontaneous metastasis. Accordingly, survival rates of KO tumor-bearing mice were significantly prolonged in contrast to those transplanted with control cells. Analyzing the in vitro ability of KO and control B16F10 cells in terms of endothelial cell adhesion and spheroid formation revealed that xCT expression indeed plays an important role during metastasis. Hence, system xc- emerges to be essential for tumor metastasis in mice, thus qualifying as a highly attractive anticancer drug target, particularly in light of its dispensable role for normal life in mice.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Técnicas de Inativação de Genes/métodos , Melanoma/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Taxa de Sobrevida
3.
Int J Urol ; 23(6): 510-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27020040

RESUMO

OBJECTIVES: To clarify the interaction between adipose tissue stromal cells and bladder cancer cells. METHODS: Superficial (RT4) and invasive (EJ) urothelial carcinoma cells were cultured on adipose tissue stromal cell-embedded or non-embedded collagen gel. Cells were analyzed by immunohistochemistry, western blot and real-time reverse transcription polymerase chain reaction. RESULTS: Adipose tissue stromal cells inhibited growth of RT4, while they promoted the apoptosis. In contrast, adipose tissue stromal cells promoted growth of EJ, but they did not affect the apoptosis. Adipose tissue stromal cells slightly promoted expression of mitogen-activated protein kinase cascade in RT4 and EJ. Adipose tissue stromal cells promoted display of the molecular-targeted agent human epidermal growth factor receptor-2 in only RT4. In turn, RT4 and EJ enhanced α-smooth muscle actin (myofibroblast marker) and S-100 protein (adipocyte marker) expression of adipose tissue stromal cells, respectively. CONCLUSIONS: These findings suggest that: (i) adipose tissue stromal cells might suppress the progression of superficial-type cancer, whereas they might promote that of invasive type; (ii) adipose tissue stromal cell-activated mitogen-activated protein kinase pathway might play differential roles in both types of bladder cancer; (iii) human epidermal growth factor receptor-2 could represent a critical therapeutic agent for the superficial type under adipose tissue stromal cells-cancer interaction; and (iv) superficial bladder cancer might promote myofibroblast differentiation of adipose tissue stromal cells as a cancer-associate phenotype, whereas invasive bladder cancer might promote their adipocyte differentiation.


Assuntos
Apoptose , Carcinoma de Células de Transição/patologia , Invasividade Neoplásica , Células Estromais , Neoplasias da Bexiga Urinária/patologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Humanos
4.
Am J Pathol ; 186(5): 1180-94, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26952643

RESUMO

Esophageal squamous cell carcinoma (ESCC) develops within the squamous epithelial layer and invades the submucosa to the subadventitia that has adipose tissue (AT). AT seems critical to ESCC progression, but the underlying mechanism is unknown. We aimed to address the association between ESCC and AT in vitro. ESCC cells were cultured on rat or human subcutaneous AT-embedded or -non-embedded collagen gel. AT promoted the growth of ESCC cells and inhibited their apoptosis. AT promoted the expression of the squamous differentiation marker involucrin in ESCC cells. AT accelerated the expression of invasion-related factors in poorly differentiated ESCC cells only. AT promoted the expression of phosphorylated-insulin-like growth factor-1 receptor in ESCC cells, whereas it inhibited that of the human epidermal growth factor receptor 2. Insulin-like growth factor-1, but not leptin, adiponectin, or resistin, promoted and inhibited the growth and apoptosis of ESCC cells, respectively. In turn, ESCC cells decreased the production of these adipokines in AT and the number of preadipocytes and mesenchymal stem cell-like cells, which developed from AT. These results suggest that i) AT may influence the progression of ESCC with increased growth or invasion and decreased apoptosis through insulin-like growth factor-1/insulin-like growth factor-1 receptor signaling, ii) AT may affect human epidermal growth factor receptor 2-targeted therapy; and iii) the cancer cells may affect adipokine production in AT.


Assuntos
Tecido Adiposo/fisiologia , Carcinoma de Células Escamosas/fisiopatologia , Neoplasias Esofágicas/fisiopatologia , Adiponectina/farmacologia , Animais , Apoptose/fisiologia , Biomarcadores Tumorais/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Carcinoma de Células Escamosas do Esôfago , Filaminas/metabolismo , Humanos , Hipertrofia/fisiopatologia , Fator de Crescimento Insulin-Like I , Metabolismo dos Lipídeos/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microscopia Eletrônica , Precursores de Proteínas/metabolismo , Ratos Wistar , Receptor ErbB-2/metabolismo , Resistina/farmacologia , Células Estromais/fisiologia , Células Tumorais Cultivadas , Calinina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA