Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virol J ; 21(1): 54, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444021

RESUMO

Human papillomavirus (HPV) is a double-stranded DNA virus that infects cutaneous and mucosal epithelial cells. HPV replication initiates at the origin (ori), located within a noncoding region near the major early promoter. Only two viral proteins, E1 and E2, are essential for replication, with the host cell contributing other necessary factors. However, the role of host cell proteins in regulating HPV replication remains poorly understood. While several binding sites for cellular transcription factors (TFs), such as POU-HD proteins, have been mapped in the regulatory region, their functional importance is unclear. Some POU-HD TFs have been shown to influence replication in a system where E1 and E2 are provided exogenously. In this study, we investigated the impact of several POU-HD TFs on the replication of the HPV5, HPV11, and HPV18 genomes in U2OS cells and human primary keratinocytes. We demonstrated that OCT1, OCT6, BRN5A, and SKN1A are expressed in HPV host cells and that their overexpression inhibits HPV genome replication, whereas knocking down OCT1 had a positive effect. Using the replication-deficient HPV18-E1- genome, we demonstrated that OCT1-mediated inhibition of HPV replication involves modulation of HPV early promoters controlling E1 and E2 expression. Moreover, using Oct6 mutants deficient either in DNA binding or transcriptional regulation, we showed that the inhibition of HPV18 replication is solely dependent on Oct6's DNA binding activity. Our study highlights the complex regulatory roles of POU-HD factors in the HPV replication.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Humanos , Papillomaviridae/genética , Papillomavirus Humano 18 , DNA
2.
J Virol ; 95(13): e0025121, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853963

RESUMO

Several types of widespread human papillomaviruses (HPVs) may induce the transformation of infected cells, provoking the development of neoplasms. Two main genera of HPVs are classified as mucosatropic alphapapillomaviruses and cutaneotropic betapapillomaviruses (α- and ß-HPVs, respectively), and they both include high-risk cancer-associated species. The absence of antiviral drugs has driven investigations into the details of the molecular mechanisms of the HPV life cycle. HPV replication depends on the viral helicase E1 and the transcription factor E2. Their biological activities are controlled by numerous cellular proteins, including protein kinases. Here, we report that ubiquitously expressed cyclic AMP-dependent protein kinase A (PKA) differentially regulates the replication of α-HPV11, α-HPV18, and ß-HPV5. PKA stimulates the replication of both α-HPVs studied but has a more profound effect on the replication of high-risk α-HPV18. However, the replication of ß-HPV5 is inhibited by activated PKA in human primary keratinocytes and U2OS cells. We show that the activation of PKA signaling by different pharmacological agents induces the rapid proteasomal degradation of the HPV5 E2 protein, which in turn leads to the downregulation of E2-dependent transcription. In contrast, PKA-stimulated induction of HPV18 replication is the result of the downregulation of the E8^E2 transcript encoding a potent viral transcriptional inhibitor together with the rapid upregulation of E1 and E2 protein levels. IMPORTANCE Several types of human papillomaviruses (HPVs) are causative agents of various types of epithelial cancers. Here, we report that ubiquitously expressed cyclic AMP-dependent protein kinase A (PKA) differentially regulates the replication of various types of HPVs during the initial amplification and maintenance phases of the viral life cycle. The replication of the skin cancer-related pathogen HPV5 is suppressed, whereas the replication of the cervical cancer-associated pathogen HPV18 is activated, in response to elevated PKA activity. To inhibit HPV5 replication, PKA targets the viral transcriptional activator E2, inducing its rapid proteasomal degradation. PKA-dependent stimulation of HPV18 replication relies on the downregulation of another E2 gene product, E8^E2, which encodes a potent transcriptional repressor. Our findings highlight, for the first time, protein kinase-related mechanistic differences in the regulation of the replication of mucosal and cutaneous HPV types.


Assuntos
Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , Papillomavirus Humano 18/crescimento & desenvolvimento , Proteínas Oncogênicas Virais/metabolismo , Replicação Viral/fisiologia , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Genoma Viral/genética , Papillomavirus Humano 18/classificação , Humanos , Infecções por Papillomavirus/patologia , Fatores de Transcrição/metabolismo
3.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32759324

RESUMO

The life cycle of human papillomaviruses (HPVs) comprises three distinct phases of DNA replication: initial amplification, maintenance of the genome copy number at a constant level, and vegetative amplification. The viral helicase E1 is one of the factors required for the initiation of HPV genome replication. However, the functions of the E1 protein during other phases of the viral life cycle are largely uncharacterized. Here, we studied the role of the HPV18 E1 helicase in three phases of viral genome replication by downregulating E1 expression using RNA interference or inducing degradation of the E1 protein via inhibition of casein kinase 2α expression or catalytic activity. We generated a novel modified HPV18 genome expressing Nanoluc and tagged E1 and E2 proteins and created several stable HPV18-positive cell lines. We showed that, in contrast to initial amplification of the HPV18 genome, other phases of viral genome replication involve also an E1-independent mechanism. We characterize two distinct populations of HPV18 replicons existing during the maintenance and vegetative amplification phases. We show that a subset of these replicons, including viral genome monomers, replicate in an E1-dependent manner, while some oligomeric forms of the HPV18 genome replicate independently of E1 function.IMPORTANCE Human papillomavirus (HPV) infections pose serious medical problem. To date, there are no HPV-specific antivirals available due to poor understanding of the molecular mechanisms of virus infection cycle. The infection cycle of HPV involves initial amplification of the viral genomes and maintenance of the viral genomes with a constant copy number, followed by another round of viral genome amplification and new viral particle formation. The viral protein E1 is critical for the initial amplification of the viral genome. However, E1 involvement in other phases of the viral life cycle has remained controversial. In the present study, we show that at least two different replication modes of the HPV18 genome are undertaken simultaneously during the maintenance and vegetative amplification phases, i.e., replication of the majority of the HPV18 genome proceeds under the control of the host cell replication machinery without E1 function, whereas a minority of the genome replicates in an E1-dependent manner.


Assuntos
Regulação Viral da Expressão Gênica , Genoma Viral , Papillomavirus Humano 18/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Replicação Viral , Linhagem Celular Tumoral , Humanos , Proteínas Oncogênicas Virais/genética
4.
PLoS One ; 14(11): e0225775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770404

RESUMO

The Sonic Hedgehog (Shh) signalling pathway plays multiple roles during embryonic development and under pathological conditions. Although the core components of the Shh pathway are conserved, the regulation of signal transduction varies significantly among species and cell types. Protein kinases Ulk3 and Pka are involved in the Shh pathway as modulators of the activities of Gli transcription factors, which are the nuclear mediators of the signal. Here, we investigate the regulation and activities of two GLI1 isoforms, full-length GLI1 (GLI1FL) and GLI1ΔN. The latter protein lacks the first 128 amino acids including the conserved phosphorylation cluster and the binding motif for SUFU, the key regulator of GLI activity. Both GLI1 isoforms are co-expressed in all human cell lines analysed and possess similar DNA binding activity. ULK3 potentiates the transcriptional activity of both GLI1 proteins, whereas PKA inhibits the activity of GLI1ΔN, but not GLI1FL. In addition to its well-established role as a transcriptional activator, GLI1FL acts as a repressor by inhibiting transcription from the early promoters of human papillomavirus type 18 (HPV18). Additionally, compared to GLI1ΔN, GLI1FL is a more potent suppressor of replication of several HPV types. Altogether, our data show that the N-terminal part of GLI1FL is crucial for the realization of its full potential as a transcriptional regulator.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Papillomaviridae/fisiologia , Proteínas Repressoras/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , DNA/metabolismo , Humanos , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/química , Alinhamento de Sequência , Ativação Transcricional , Replicação Viral , Proteína GLI1 em Dedos de Zinco/química , Proteína GLI1 em Dedos de Zinco/genética
5.
PLoS Pathog ; 15(5): e1007788, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31091289

RESUMO

Inhibition of human papillomavirus (HPV) replication is a promising therapeutic approach for intervening with HPV-related pathologies. Primary targets for interference are two viral proteins, E1 and E2, which are required for HPV replication. Both E1 and E2 are phosphoproteins; thus, the protein kinases that phosphorylate them might represent secondary targets to achieve inhibition of HPV replication. In the present study, we show that CX4945, an ATP-competitive small molecule inhibitor of casein kinase 2 (CK2) catalytic activity, suppresses replication of different HPV types, including novel HPV5NLuc, HPV11NLuc and HPV18NLuc marker genomes, but enhances the replication of HPV16 and HPV31. We further corroborate our findings using short interfering RNA (siRNA)-mediated knockdown of CK2 α and α' subunits in U2OS and CIN612 cells; we show that while both subunits are expressed in these cell lines, CK2α is required for HPV replication, but CK2α' is not. Furthermore, we demonstrate that CK2α acts in a kinase activity-dependent manner and regulates the stability and nuclear retention of endogenous E1 proteins of HPV11 and HPV18. This unique feature of CK2α makes it an attractive target for developing antiviral agents.


Assuntos
Papillomaviridae/fisiologia , Infecções por Papillomavirus/virologia , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/virologia , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Fosfoproteínas/genética , Fosforilação , Células Tumorais Cultivadas , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA