Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 220: 113454, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33901900

RESUMO

Artemisinin-based combination therapies (ACTs) have been able to reduce the clinical and pathological malaria cases in endemic areas around the globe. However, recent reports have shown a progressive decline in malaria parasite clearance in South-east Asia after ACT treatment, thus envisaging a need for new artemisinin (ART) derivatives and combinations. To address the emergence of drug resistance to current antimalarials, here we report the synthesis of artemisinin-peptidyl vinyl phosphonate hybrid molecules that show superior efficacy than artemisinin alone against chloroquine-resistant as well as multidrug-resistant Plasmodium falciparum strains with EC50 in pico-molar ranges. Further, the compounds effectively inhibited the survival of ring-stage parasite for laboratory-adapted artemisinin-resistant parasite lines as compared to artemisinin. These hybrid molecules showed complete parasite clearance in vivo using P. berghei mouse malaria model in comparison to artemisinin alone. Studies on the mode of action of hybrid molecules suggested that these artemisinin-peptidyl vinyl phosphonate hybrid molecules possessed dual activities: inhibited falcipain-2 (FP-2) activity, a P. falciparum cysteine protease involved in hemoglobin degradation, and also blocked the hemozoin formation in the food-vacuole, a step earlier shown to be blocked by artemisinin. Since these hybrid molecules blocked multiple steps of a pathway and showed synergistic efficacies, we believe that these lead compounds can be developed as effective antimalarials to prevent the spread of resistance to current antimalarials.


Assuntos
Antimaláricos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Artemisininas/síntese química , Artemisininas/química , Artemisininas/farmacologia , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Heme/antagonistas & inibidores , Heme/metabolismo , Malária/metabolismo , Estrutura Molecular , Organofosfonatos/síntese química , Organofosfonatos/química , Organofosfonatos/farmacologia , Testes de Sensibilidade Parasitária , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Compostos de Vinila/síntese química , Compostos de Vinila/química , Compostos de Vinila/farmacologia
2.
Bioorg Chem ; 108: 104514, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33280833

RESUMO

Targeting Falcipain-2 (FP2) for the development of antimalarials is a promising and established concept in antimalarial drug discovery and development. FP2, a member of papain-family cysteine protease of the malaria parasite Plasmodium falciparum holds an important role in hemoglobin degradation pathway. A new series of quinoline carboxamide-based compounds was designed, synthesized and evaluated for antimalarial activity. We integrated molecular hybridization strategy with in-silico drug design to develop FP2 inhibitors. In-vitro results of FP2 inhibition by Qs17, Qs18, Qs20 and Qs21 were found to be in low micromolar range with IC50 4.78, 7.37, 2.14 and 2.64 µM, respectively. Among the 25 synthesized compounds, four compounds showed significant antimalarial activities. These compounds also depicted morphological and food-vacuole abnormalities much better than that of E-64, an established FP2 inhibitor. Overall these aromatic substituted quinoline carboxamides can serve as promising leads for the development of novel antimalarial agents.


Assuntos
Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Malária Falciparum/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
3.
ACS Omega ; 5(45): 29025-29037, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225134

RESUMO

Racemic and enantioselective syntheses of γ-phenyl-γ-amino vinyl phosphonates and sulfones have been achieved using Horner-Wadsworth-Emmons olefination of trityl protected α-phenyl-α-amino aldehydes with tetraethyl methylenediphosphonate and diethyl ((phenylsulfonyl)methyl)phosphonate, respectively, without any racemization. The present strategy has also been successfully applied to the synthesis of peptidyl vinyl phosphonate and peptidyl vinyl sulfone derivatives as potential cysteine protease inhibitors of Chagas disease, K11002, with 100% de. The developed synthetic protocol was further utilized to synthesize hybrid molecules consisting of artemisinin as an inhibitor of major cysteine protease falcipain-2 present in the food vacuole of the malarial parasite. The synthesized artemisinin-dipeptidyl vinyl sulfone hybrid compounds showed effective in vitro inhibition of falcipain-2 and potent parasiticidal efficacies against Plasmodium falciparum in nanomolar ranges. Overall, the developed synthetic protocol could be effectively utilized to design cysteine protease inhibitors not only as novel antimalarial compounds but also to be involved in other life-threatening diseases.

4.
Bioorg Med Chem ; 28(1): 115155, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31744777

RESUMO

Falcipains (FPs), cysteine proteases in the malarial parasite, are emerging as the promising antimalarial drug targets. In order to identify novel FP inhibitors, we generated a pharmacophore derived from the reported co-crystal structures of inhibitors of Plasmodium falciparum Falcipain-3 to screen the ZINC library. Further, the filters were applied for dock score, drug-like characters, and clustering of similar structures. Sixteen molecules were purchased and subject to in vitro enzyme (FP-2 and FP-3) inhibition assays. Two compounds showed in vitro inhibition of FP-2 and FP-3 at low µM concentration. The selectivity of the inhibitors can be explained based on the predicted interactions of the molecule in the active site. Further, the inhibitors were evaluated in a functional assay and were found to induce morphological changes in line with their mode of action arresting Plasmodium development. Compound 15 was most potent inhibitor identified in this study.


Assuntos
Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
5.
RSC Adv ; 9(67): 39410-39421, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35540629

RESUMO

Falcipain-2 (FP2) is a papain family cysteine protease and a key member of the hemoglobin degradation pathway, a process that is required at erythrocytic stages of Plasmodium falciparum to obtain amino acids. In this study, we report a set of 10 quinoline-triazole-based compounds (T1-T10) which exhibit a good binding affinity for FP2, inhibit its catalytic activity at micromolar concentrations and thereby arrest the parasite growth. Compounds T4 and T7 inhibited FP2 with IC50 values of 16.16 µM and 25.64 µM respectively. Both the compounds T4 and T7 arrested the development of P. falciparum at the trophozoite stage with an EC50 value 21.89 µM and 49.88 µM. These compounds also showed morphological and food-vacuole abnormalities like E-64, a known inhibitor of FP2. Our results thus identify the quinoline-triazole-based compounds as a probable starting point for the design of FP2 inhibitors and they should be further investigated as potential antimalarial agents.

6.
Mol Plant ; 9(11): 1464-1477, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27773616

RESUMO

Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (∼0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants.


Assuntos
Artemisininas/metabolismo , Artemisininas/farmacologia , Malária Falciparum/tratamento farmacológico , Engenharia Metabólica , Células Vegetais/metabolismo , Administração Oral , Animais , Artemisininas/uso terapêutico , Cloroplastos/genética , Camundongos , Plantas Geneticamente Modificadas
7.
Cell Death Dis ; 5: e994, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24434517

RESUMO

Signal recognition particle (SRP) is a ubiquitous ribonucleoprotein complex that targets proteins to endoplasmic reticulum (ER) in eukaryotes. Here we report that Plasmodium falciparum SRP is composed of six polypeptides; SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72 and a 303nt long SRP RNA. We generated four transgenic parasite lines expressing SRP-GFP chimeric proteins and co-localization studies showed the nucleo-cytoplasmic localization for these proteins. The evaluation of the effect of known SRP and nuclear import/export inhibitors on P. falciparum revealed that ivermectin, an inhibitor of importin α/ß mediated nuclear import inhibited the nuclear import of PfSRP polypeptides at submicromolar concentration, thereby killing the parasites. These findings provide insights into dynamic structure of P. falciparum SRP and also raise the possibility that ivermectin could be used in combination with other antimalarial agents to control the disease.


Assuntos
Antiprotozoários/farmacologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ivermectina/farmacologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Citoplasma/efeitos dos fármacos , Citoplasma/genética , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Partícula de Reconhecimento de Sinal/genética
8.
Diagn Cytopathol ; 42(8): 726-31, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24376261

RESUMO

Breast carcinoma shows amplification/overexpression of Her-2/neu in ∼20-30% of cases. The determination of Her-2/neu expression accurately is vital in clinical practice as it has significant predictive value and eligibility for anti Her-2/neu therapy. Amplification and overexpression of Her-2/neu gene is traditionally identified by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) on tissue sections; only a few studies have evaluated feasibility of these techniques on cytological smears. One hundred cases of breast cancer with fine-needle aspiration cytology (FNAC) samples and corresponding surgically resected specimen were selected. Immunocytochemistry (ICC) and FISH for Her-2/neu was done on FNA smears, whereas IHC was performed on corresponding tissue sections. Diagnostic accuracy of ICC was 99% when compared with IHC. Comparison of FISH results with IHC showed 100% concordance. Unlike many centers in West, FNAC is still routinely performed in developing countries like India where vast majority of breast cancer cases present as palpable lumps. The high rates of accuracy of ICC and FISH for Her-2/neu detection can make FNAC a relevant first line of investigation as a cost effective model with a rapid turn-around time, providing complete information necessary for initial management of breast cancer patients.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente/métodos , Receptor ErbB-2/metabolismo , Centros de Atenção Terciária , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia por Agulha Fina , Feminino , Humanos , Índia , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA