Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 32(1): 229-237, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093193

RESUMO

BACKGROUND: The precise origin of phosphate that is removed during hemodialysis remains unclear; only a minority comes from the extracellular space. One possibility is that the remaining phosphate originates from the intracellular compartment, but there have been no available data from direct assessment of intracellular phosphate in patients undergoing hemodialysis. METHODS: We used phosphorus magnetic resonance spectroscopy to quantify intracellular inorganic phosphate (Pi), phosphocreatine (PCr), and ßATP. In our pilot, single-center, prospective study, 11 patients with ESKD underwent phosphorus (31P) magnetic resonance spectroscopy examination during a 4-hour hemodialysis treatment. Spectra were acquired every 152 seconds during the hemodialysis session. The primary outcome was a change in the PCr-Pi ratio during the session. RESULTS: During the first hour of hemodialysis, mean phosphatemia decreased significantly (-41%; P<0.001); thereafter, it decreased more slowly until the end of the session. We found a significant increase in the PCr-Pi ratio (+23%; P=0.001) during dialysis, indicating a reduction in intracellular Pi concentration. The PCr-ßATP ratio increased significantly (+31%; P=0.001) over a similar time period, indicating a reduction in ßATP. The change of the PCr-ßATP ratio was significantly correlated to the change of depurated Pi. CONCLUSIONS: Phosphorus magnetic resonance spectroscopy examination of patients with ESKD during hemodialysis treatment confirmed that depurated Pi originates from the intracellular compartment. This finding raises the possibility that excessive dialytic depuration of phosphate might adversely affect the intracellular availability of high-energy phosphates and ultimately, cellular metabolism. Further studies are needed to investigate the relationship between objective and subjective effects of hemodialysis and decreases of intracellular Pi and ßATP content. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Intracellular Phosphate Concentration Evolution During Hemodialysis by MR Spectroscopy (CIPHEMO), NCT03119818.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfatos/metabolismo , Diálise Renal , Acidose/metabolismo , Adulto , Idoso , Cálcio/metabolismo , Metabolismo Energético , Feminino , Hemodinâmica , Humanos , Concentração de Íons de Hidrogênio , Falência Renal Crônica/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fosfocreatina/metabolismo , Fósforo , Isótopos de Fósforo , Projetos Piloto , Estudos Prospectivos
2.
Biomed Res Int ; 2013: 686150, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24328031

RESUMO

Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN) from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n = 155) performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC) curves. IgAN was found (on pathology) in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67%) and specificity (73% versus 95%) using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.


Assuntos
Glomerulonefrite por IGA/diagnóstico , Imunoglobulina A/sangue , Prognóstico , Adulto , Idoso , Teorema de Bayes , Biópsia , Feminino , Glomerulonefrite por IGA/sangue , Glomerulonefrite por IGA/patologia , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Curva ROC
3.
Kidney Int ; 83(5): 878-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423258

RESUMO

Chronic kidney disease (CKD) is frequently associated with protein-energy wasting, a recognized strong predictive factor of mortality. Zinc α2-glycoprotein (ZAG) is a new adipokine involved in body weight control through its lipid-mobilizing activity. Here we tested whether the uremic environment in CKD could alter ZAG production by white adipose tissue and contribute to CKD-associated metabolic disturbances. Compared with normal plasma, uremic plasma induced a significant increase in ZAG synthesis (124%), was associated with a significant increase in basal lipolysis (31%), and significantly blunted lipogenesis (-53%) in 3T3-L1 adipocytes in vitro. In 5/6 nephrectomized rats and mice in vivo, there was a significant decrease in white adipose tissue accretion (-44% and -43%, respectively) and a significantly higher white adipose tissue content of ZAG protein than in sham-operated, pair-fed control animals (498% and 106%, respectively). Subcutaneous white adipose tissue biopsies from patients with end-stage renal disease exhibited a higher content of ZAG (573%) than age-matched controls. Thus, the ZAG content is increased in white adipose tissue from patients or animal models with CKD. Overproduction of ZAG in CKD could be a major contributor to metabolic disturbances associated with CKD.


Assuntos
Tecido Adiposo Branco/metabolismo , Proteínas de Transporte/sangue , Glicoproteínas/sangue , Insuficiência Renal Crônica/sangue , Células 3T3-L1 , Adipocinas , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biópsia , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Humanos , Falência Renal Crônica/sangue , Lipogênese , Lipólise , Masculino , Camundongos , Pessoa de Meia-Idade , Diálise Peritoneal , Ratos , Ratos Wistar , Diálise Renal , Insuficiência Renal Crônica/terapia , Regulação para Cima , Uremia/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA