Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 176: 105726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556052

RESUMO

We investigated the influence of the so-called bystander effect on metabolic and histopathological changes in the rat brain after fractionated spinal cord irradiation. The study was initiated with adult Wistar male rats (n = 20) at the age of 9 months. The group designated to irradiation (n = 10) and the age-matched control animals (n = 10) were subjected to an initial measurement using in vivo proton magnetic resonance spectroscopy (1H MRS) and magnetic resonance imaging (MRI). After allowing the animals to survive until 12 months, they received fractionated spinal cord irradiation with a total dose of 24 Gy administered in 3 fractions (8 Gy per fraction) once a week on the same day for 3 consecutive weeks. 1H MRS and MRI of brain metabolites were performed in the hippocampus, corpus striatum, and olfactory bulb (OB) before irradiation (9-month-old rats) and subsequently 48 h (12-month-old) and 2 months (14-month-old) after the completion of irradiation. After the animals were sacrificed at the age of 14 months, brain tissue changes were investigated in two neurogenic regions: the hippocampal dentate gyrus (DG) and the rostral migratory stream (RMS). By comparing the group of 9-month-old rats and individuals measured 48 h (at the age of 12 months) after irradiation, we found a significant decrease in the ratio of total N-acetyl aspartate to total creatine (tNAA/tCr) and gamma-aminobutyric acid to tCr (GABA/tCr) in OB and hippocampus. A significant increase in myoinositol to tCr (mIns/tCr) in the OB persisted up to 14 months of age. Proton nuclear magnetic resonance (1H NMR)-based plasma metabolomics showed a significant increase in keto acids and decreased tyrosine and tricarboxylic cycle enzymes. Morphometric analysis of neurogenic regions of 14-month-old rats showed well-preserved stem cells, neuroblasts, and increased neurodegeneration. The radiation-induced bystander effect more significantly affected metabolite concentration than the distribution of selected cell types.


Assuntos
Envelhecimento , Encéfalo , Efeito Espectador , Ratos Wistar , Medula Espinal , Animais , Masculino , Ratos , Envelhecimento/efeitos da radiação , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/efeitos da radiação , Encéfalo/metabolismo , Efeito Espectador/efeitos da radiação , Medula Espinal/efeitos da radiação , Medula Espinal/metabolismo , Medula Espinal/patologia , Imageamento por Ressonância Magnética , Fracionamento da Dose de Radiação
2.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768179

RESUMO

Inhalation of silica particles causes inflammatory changes leading to fibrotizing silicosis. Considering a lack of effective therapy, and a growing information on the wide actions of green tea polyphenols, particularly epigallocatechin-3-gallate (EGCG), the aim of this study was to evaluate the early effects of EGCG on markers of inflammation and lung fibrosis in silicotic rats. The silicosis model was induced by a single transoral intratracheal instillation of silica (50 mg/mL/animal), while controls received an equivalent volume of saline. The treatment with intraperitoneal EGCG (20 mg/kg, or saline in controls) was initiated the next day after silica instillation and was given twice a week. Animals were euthanized 14 or 28 days after the treatment onset, and the total and differential counts of leukocytes in the blood and bronchoalveolar lavage fluid (BALF), wet/dry lung weight ratio, and markers of inflammation, oxidative stress, and fibrosis in the lung were determined. The presence of collagen and smooth muscle mass in the walls of bronchioles and lung vessels was investigated immunohistochemically. Early treatment with EGCG showed some potential to alleviate inflammation, and a trend to decrease oxidative stress-induced changes, including apoptosis, and a prevention of fibrotic changes in the bronchioles and pulmonary vessels. However, further investigations should be undertaken to elucidate the effects of EGCG in the lung silicosis model in more detail. In addition, because of insufficient data from EGCG delivery in silicosis, the positive and eventual adverse effects of this herbal compound should be carefully studied before any preventive use or therapy with EGCG may be recommended.


Assuntos
Catequina , Silicose , Ratos , Animais , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Chá/química , Pulmão/patologia , Silicose/tratamento farmacológico , Silicose/patologia , Fibrose , Inflamação/tratamento farmacológico , Inflamação/patologia , Catequina/farmacologia , Catequina/uso terapêutico , Dióxido de Silício
3.
Neurochem Int ; 154: 105293, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101551

RESUMO

Radiation-induced brain injury (RII) is a harmful side-effect occurring after conventional radiation therapy (usually fractionated whole-brain irradiation/fWBI) of patients with cerebral tumors and metastases. An important role in the quality of patients' lives plays cognitive, executive, and emotional functions, regulation on which are involved in frontal cortices pathways. This study assessed the morphologic and metabolic alterations in the rodent frontal cortex caused by fWBI with the total dose of 32 Gy in 4 fractions performed by linear accelerator Clinac iX. Nine male Wistar rats underwent radiation procedures, whereas the other nine rats were investigated as a sham-irradiated group. All eighteen animals were examined using magnetic resonance (MR) in three intervals - before, on 2nd, and 70th day after sham/irradiation. After ten weeks of surviving, all rats underwent histopathological analysis determined by image analysis of immunofluorescent stained sections in the frontal cortex. MR examination was performed on 7T MR scanner Bruker BioSpec 70/20 and consisted of MR-volumetry, T2 relaxometry, and single-voxel proton-1 MR spectroscopy localized in the frontal cortex. Both tissue volume and T2 relaxation time of the frontal cortex were significantly lower in animals after 2 and 70 days of exposure than in controls; however, there were no differences between irradiated groups. Similarly, in animals' frontal cortex after fWBI, increased levels of myoinositol and glutamate/glutamine ratios were observed. Ratios of N-acetyl-aspartate, choline, and peaks of lactate and lipids did not change between groups. The histopathological analysis of the frontal cortex showed increased signs of neurodegeneration and a slight increase in astrocytes and microglia in exposed animals. Early (2 days, 10 weeks) after clinically relevant fWBI were in the frontal cortices of exposed rodents confirmed morphologic and metabolic changes indicating neurodegenerative changes, initializing cerebral atrophy, and evident signs of endothelial disruption and dysregulated neurotransmission that may cause a wide range of functional as well as cognitive deficits.


Assuntos
Encéfalo , Roedores , Animais , Encéfalo/metabolismo , Lobo Frontal/diagnóstico por imagem , Humanos , Masculino , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Ratos Wistar
4.
Neoplasma ; 68(4): 852-860, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33904314

RESUMO

Targeting metabolomic pathways is a promising strategy for cancer treatment. Alterations in the metabolomic state have also an epigenetic impact, making the metabolomic studies even more interesting. We explored metabolomic changes in the blood plasma of patients with primary and secondary lung cancer and tried to explore their origin. We also applied a discrimination algorithm to the data. In the study, blood samples from 132 patients with primary lung cancer, 47 with secondary lung cancer, and 77 subjectively healthy subjects without any cancer history were used. The samples were measured by NMR spectroscopy. PCA and PLS-DA analyses did not distinguish between patients with primary and secondary lung tumors. Accordingly, no significantly changed levels of plasmatic metabolites were found between these groups. When comparing with healthy controls, significantly increased glucose, citrate, acetate, 3-hydroxybutyrate, and creatinine balanced with decreased pyruvate, lactate, alanine, tyrosine, and tryptophan were found as a common feature of both groups. Metabolomic analysis of blood plasma showed considerable proximity of patients with primary and secondary lung cancer. The changes observed can be partially explained as cancer-derived and also as changes showing ischemic nature. Random Forrest discrimination based on the relative concentration of metabolites in blood plasma performed very promising with AUC of 0.95 against controls; however noticeable parts of differencing metabolites are overlapping with those observed after ischemic injury in other studies.


Assuntos
Neoplasias Pulmonares , Metabolômica , Humanos , Pulmão , Espectroscopia de Ressonância Magnética , Plasma
5.
Neurochem Int ; 145: 104985, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582163

RESUMO

In the present study, we investigated the correlation between histopathological, metabolic, and volumetric changes in the brain and plasma under experimental conditions. Adult male Wistar rats received fractionated whole-brain irradiation (fWBI) with a total dose of 32 Gy delivered in 4 fractions (dose 8 Gy per fraction) once a week on the same day for 4 consecutive weeks. Proton magnetic resonance spectroscopy (1H MRS) and imaging were used to detect metabolic and volumetric changes in the brain and plasma. Histopathological changes in the brain were determined by image analysis of immunofluorescent stained sections. Metabolic changes in the brain measured by 1H MRS before, 48 h, and 9 weeks after the end of fWBI showed a significant decrease in the ratio of total N-acetylaspartate to total creatine (tNAA/tCr) in the corpus striatum. We found a significant decrease in glutamine + glutamate/tCr (Glx/tCr) and, conversely, an increase in gamma-aminobutyric acid to tCr (GABA/tCr) in olfactory bulb (OB). The ratio of astrocyte marker myoinositol/tCr (mIns/tCr) significantly increased in almost all evaluated areas. Magnetic resonance imaging (MRI)-based brain volumetry showed a significant increase in volume, and a concomitant increase in the T2 relaxation time of the hippocampus. Proton nuclear magnetic resonance (1H NMR) plasma metabolomics displayed a significant decrease in the level of glucose and glycolytic intermediates and an increase in ketone bodies. The histomorphological analysis showed a decrease to elimination of neuroblasts, increased astrocyte proliferation, and a mild microglia response. The results of the study clearly reflect early subacute changes 9-11 weeks after fWBI with strong manifestations of brain edema, astrogliosis, and ongoing ketosis.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fracionamento da Dose de Radiação , Metabolismo Energético/fisiologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/patologia , Encéfalo/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Masculino , Tamanho do Órgão/fisiologia , Tamanho do Órgão/efeitos da radiação , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ratos , Ratos Wistar
6.
IUBMB Life ; 72(9): 2010-2023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663378

RESUMO

Cardiac arrest is one of the major causes of death and disability. The aim of the study was to identify dynamic time-dependent metabolomic changes reflected in rat plasma induced by cerebral ischemia and reperfusion with the focus on the protective effect of ischemic preconditionig. Global cerebral ischemia in rats was induced by the four-vessel occlusion. Blood plasma was collected in three reperfusion times: an early post-acute 3 hr, then 24 hr, as an incipient time for delayed neuronal death induction and 72 hr as prolonged reperfusion period. The metabolomic measurements were conducted via untargeted nuclear magnetic resonance spectroscopy. Plasma of ischemized rats manifested dynamic metabolomic changes over the reperfusion time, such as increased levels of ketone bodies, decreased levels of pyruvate, alanine, and citrate. All three branched chain amino acids showed common pattern during reperfusion time: a decrease in 3 hr compared to sham, then a highest level in 24 hr and decrease in 72 hr reperfusion time, similar to their corresponding ketoacids. The protective effect of ischemic preconditioning was demonstrated by a faster tendency of plasma metabolites to normalize. Results also proved the remarkable metabolomic differences between the control (naïve) and sham-operated anesthetized animals, what warrants for critical evaluation of surgery/anaesthesy in the algorithm of metabolomic animal studies.


Assuntos
Isquemia Encefálica/patologia , Precondicionamento Isquêmico/métodos , Metaboloma , Plasma/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Isquemia Encefálica/metabolismo , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Fatores de Tempo
7.
J Biomed Res ; 31(4): 301-305, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28808201

RESUMO

Iron can contribute to the pathogenesis and progression of multiple sclerosis (MS) due to its accumulation in the human brain. We focus on the thalamus as an information transmitter between various subcortical and cortical areas. Thalamic iron seems to follow different rules than iron in other deep gray matter structures and its relation to the clinical outcomes of MS is still indistinct. In our study, we investigated a connection between thalamic iron and patients' disability and course of the disease. The presence of paramagnetic substances in the tissues was tracked by T2* quantification. Twenty-eight subjects with definite MS and 15 age-matched healthy controls underwent MRI examination with a focus on gradient echo sequence. We observed a non-monotonous course of T2* values with age in healthy controls. Furthermore, T2* distribution in MS patients was significantly wider than that of age matched healthy volunteers (P<0.001). A strong significant correlation was demonstrated between T2* distribution spread and the expanded disability status scale (EDSS) (left thalamus:P<0.00005; right thalamus: P<0.005), and multiple sclerosis severity scale (MSSS) (left thalamus: P<0.05; right thalamus: P<0.005). The paramagnetic iron distribution in the thalamus in MS was not uniform and this inhomogeneity may be considered as an indicator of thalamic neurodegeneration in MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA