Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892288

RESUMO

This study demonstrated the anticancer efficacy of chalcones with indole moiety (MIPP, MOMIPP) in fibrosarcoma cells for the first time. The results showed that MIPP and MOMIPP reduced the viability of HT-1080 cells in a concentration-dependent manner. MOMIPP was more active than MIPP in HT-1080 cells, showing lower IC50 values (3.67 vs. 29.90 µM). Both compounds at a concentration of 1 µM induced apoptosis in HT-1080 cells, causing death strictly related to caspase activation, as cell viability was restored when the caspase inhibitor Z-VAD was added. Reactive oxygen species production was approximately 3-fold higher than in control cells, and cotreatment with the inhibitor of mitochondrial ATPase oligomycin diminished this effect. Such effects were also reflected in mitochondrial dysfunction, including decreased membrane potential. Interestingly, the compounds that were studied caused massive vacuolization in HT-1080 cells. Immunocytochemical staining and TEM analysis showed that HT-1080 cells exhibited increased expression of the LC3-II protein and the presence of autophagosomes with a double membrane, respectively. Both compounds induced apoptosis, highlighting a promising link between autophagy and apoptosis. This connection could be a new target for therapeutic strategies to overcome chemoresistance, which is a significant cause of treatment failure and tumour recurrence in fibrosarcoma following traditional chemotherapy.


Assuntos
Apoptose , Autofagia , Chalconas , Fibrossarcoma , Indóis , Espécies Reativas de Oxigênio , Humanos , Apoptose/efeitos dos fármacos , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Autofagia/efeitos dos fármacos , Indóis/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Chalconas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762006

RESUMO

Chronic inflammation plays an important role in the development of neurodegenerative diseases, such as Parkinson's disease (PD). In the present study, we synthesized 25 novel xanthine derivatives with variable substituents at the N1-, N3- and C8-position as adenosine receptor antagonists with potential anti-inflammatory activity. The compounds were investigated in radioligand binding studies at all four human adenosine receptor subtypes, A1, A2A, A2B and A3. Compounds showing nanomolar A2A and dual A1/A2A affinities were obtained. Three compounds, 19, 22 and 24, were selected for further studies. Docking and molecular dynamics simulation studies indicated binding poses and interactions within the orthosteric site of adenosine A1 and A2A receptors. In vitro studies confirmed the high metabolic stability of the compounds, and the absence of toxicity at concentrations of up to 12.5 µM in various cell lines (SH-SY5Y, HepG2 and BV2). Compounds 19 and 22 showed anti-inflammatory activity in vitro. In vivo studies in mice investigating carrageenan- and formalin-induced inflammation identified compound 24 as the most potent anti-inflammatory derivative. Future studies are warranted to further optimize the compounds and to explore their therapeutic potential in neurodegenerative diseases.


Assuntos
Neuroblastoma , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Inflamação , Adenosina , Carragenina
3.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903593

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.


Assuntos
Doença de Alzheimer , Neuroblastoma , Receptores Histamínicos H3 , Humanos , Histamina , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Inibidores da Colinesterase/química , Receptores Histamínicos , Monoaminoxidase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Ligantes
4.
Bioorg Chem ; 101: 104033, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32629282

RESUMO

A library of 34 novel compounds based on a xanthine scaffold was explored in biological studies for interaction with adenosine receptors (ARs). Structural modifications of the xanthine core were introduced in the 8-position (benzylamino and benzyloxy substitution) as well as at N1, N3, and N7 (small alkyl residues), thereby improving affinity and selectivity for the A2A AR. The compounds were characterized by radioligand binding assays, and our study resulted in the development of the potent A2A AR ligands including 8-((6-chloro-2-fluoro-3-methoxybenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12d; Ki human A2AAR: 68.5 nM) and 8-((2-chlorobenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12h; Ki human A2AAR: 71.1 nM). Moreover, dual A1/A2AAR ligands were identified in the group of 1,3-diethyl-7-methylxanthine derivatives. Compound 14b displayed Ki values of 52.2 nM for the A1AR and 167 nM for the A2AAR. Selected A2AAR ligands were further evaluated as inactive for inhibition of monoamine oxidase A, B and isoforms of phosphodiesterase-4B1, -10A, which represent classical targets for xanthine derivatives. Therefore, the developed 8-benzylaminoxanthine scaffold seems to be highly selective for AR activity and relevant for potent and selective A2A ligands. Compound 12d with high selectivity for ARs, especially for the A2AAR subtype, evaluated in animal models of inflammation has shown anti-inflammatory activity. Investigated compounds were found to display high selectivity and may therefore be of high interest for further development as drugs for treating cancer or neurodegenerative diseases.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Simulação de Acoplamento Molecular/métodos , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408504

RESUMO

Dual target ligands are a promising concept for the treatment of Parkinson's disease (PD). A combination of monoamine oxidase B (MAO B) inhibition with histamine H3 receptor (H3R) antagonism could have positive effects on dopamine regulation. Thus, a series of twenty-seven 4-tert-butylphenoxyalkoxyamines were designed as potential dual-target ligands for PD based on the structure of 1-(3-(4-tert-butylphenoxy)propyl)piperidine (DL76). Probed modifications included the introduction of different cyclic amines and elongation of the alkyl chain. Synthesized compounds were investigated for human H3R (hH3R) affinity and human MAO B (hMAO B) inhibitory activity. Most compounds showed good hH3R affinities with Ki values below 400 nM, and some of them showed potent inhibitory activity for hMAO B with IC50 values below 50 nM. However, the most balanced activity against both biological targets showed DL76 (hH3R: Ki = 38 nM and hMAO B: IC50 = 48 nM). Thus, DL76 was chosen for further studies, revealing the nontoxic nature of DL76 in HEK293 and neuroblastoma SH-SY5Ycells. However, no neuroprotective effect was observed for DL76 in hydrogen peroxide-treated neuroblastoma SH-SY5Y cells. Furthermore, in vivo studies showed antiparkinsonian activity of DL76 in haloperidol-induced catalepsy (Cross Leg Position Test) at a dose of 50 mg/kg body weight.


Assuntos
Aminas/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Aminas/química , Animais , Catalepsia/induzido quimicamente , Catalepsia/fisiopatologia , Catalepsia/prevenção & controle , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Haloperidol , Antagonistas dos Receptores Histamínicos H3/química , Humanos , Cinética , Ligantes , Masculino , Estrutura Molecular , Inibidores da Monoaminoxidase/química , Doença de Parkinson/fisiopatologia , Doença de Parkinson/prevenção & controle , Ratos Wistar , Relação Estrutura-Atividade
6.
Eur J Med Chem ; 155: 381-397, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29902723

RESUMO

GPR18 is a cannabinoid-activated orphan G protein-coupled receptor (GPCR) that is selectively expressed on immune cells. Despite its significant potential as a drug target for inflammatory diseases and cancer immunotherapy, only very few GPR18 ligands have been described to date. In the present study we investigated the structure-activity relationships (SARs) of (Z)-2-(3-(4-chlorobenzyloxy)benzylidene)-6,7-dihydro-2H-imidazo[2,1-b][1,3]thiazin-3(5H)-one (PSB-CB5, 5), the most potent GPR18 antagonist described to date. Analogs were synthesized that exhibit broad modifications of the heterocyclic core and/or variation of substituents at the benzylidene moiety. The compounds were investigated in ß-arrestin recruitment assays as inhibitors of human GPR18 activation by tetrahydrocannabinol (THC). Selectivity was assessed versus the cannabinoid receptors (CB1 and CB2) and versus GPR55, another orphan GPCR that interacts with cannabinoids. Phenyloxyalkyloxy-substituted benzylidenethiazinones with long alkyl chains (optimal length: hexamethylene) efficiently blocked GPR18 with similarly high potency as lead structure 5. (Z)-2-(3-(6-(4-Chlorophenoxy)hexyloxy)benzylidene)-6,7-dihydro-2H-imidazo[2,1-b][1,3]thiazin-3(5H)-one (PSB-CB-27, 23) exhibited the best profile: it displayed an IC50 value of 650 nM at GPR18 and showed improved selectivity versus CB receptors as compared to lead structure 5. Importantly, in contrast to 5, which showed only partial inhibition (60%), 23 led to a complete blockade of THC-induced GPR18 activation and is thus a superior tool for target validation. In addition, several compounds, e.g. 18 and 22, were identified as dual GPR18/GPR55 antagonists with similar potency at both targets, and selectivity versus CB receptors.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Imidazóis/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Tiazinas/farmacologia , Animais , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Tiazinas/síntese química , Tiazinas/química
7.
Bioorg Med Chem ; 26(9): 2573-2585, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29681486

RESUMO

A series of 1- and 2-naphthyloxy derivatives were synthesized and evaluated for histamine H3 receptor affinity. Most compounds showed high affinities with Ki values below 100 nM. The most potent ligand, 1-(5-(naphthalen-1-yloxy)pentyl)azepane (11) displayed high affinity for the histamine H3 receptor with a Ki value of 21.9 nM. The antagonist behaviour of 11 was confirmed both in vitro in the cAMP assay (IC50 = 312 nM) and in vivo in the rat dipsogenia model (ED50 = 3.68 nM). Moreover, compound 11 showed positive effects on scopolamine induced-memory deficits in mice (at doses of 10 and 15 mg/kg) and an analgesic effect in the formalin test in mice with ED50 = 30.6 mg/kg (early phase) and ED50 = 20.8 mg/kg (late phase). Another interesting compound, 1-(5-(Naphthalen-1-yloxy)pentyl)piperidine (13; H3R Ki = 53.9 nM), was accepted for Anticonvulsant Screening Program at the National Institute of Neurological Disorders and Stroke/National Institute of Health (Rockville, USA). The screening was performed in the maximal electroshock seizure (MES), the subcutaneous pentylenetetrazole (scPTZ) and the 6-Hz psychomotor animal models of epilepsy. Neurologic deficit was evaluated by the rotarod test. Compound 13 inhibited convulsions induced by the MES with ED50 of 19.2 mg/kg (mice, i.p.), 17.8 (rats, i.p.), and 78.1 (rats, p.o.). Moreover, 13 displayed protection against the 6-Hz psychomotor seizures (32 mA) in mice (i.p.) with ED50 of 33.1 mg/kg and (44 mA) ED50 of 57.2 mg/kg. Furthermore, compounds 11 and 13 showed in vitro weak influence on viability of tested cell lines (normal HEK293, neuroblastoma IMR-32, hepatoma HEPG2), weak inhibition of CYP3A4 activity, and no mutagenicity. Thus, these compounds may be used as leads in a further search for histamine H3 receptor ligands with promising in vitro and in vivo activity.


Assuntos
Anticonvulsivantes/farmacologia , Azepinas/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Naftalenos/farmacologia , Piperidinas/farmacologia , Analgésicos/administração & dosagem , Analgésicos/síntese química , Analgésicos/farmacologia , Analgésicos/toxicidade , Animais , Antazolina/farmacologia , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/síntese química , Anticonvulsivantes/toxicidade , Atropina/farmacologia , Azepinas/administração & dosagem , Azepinas/síntese química , Azepinas/toxicidade , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Antagonistas dos Receptores Histamínicos H3/administração & dosagem , Antagonistas dos Receptores Histamínicos H3/síntese química , Antagonistas dos Receptores Histamínicos H3/toxicidade , Humanos , Ligantes , Masculino , Camundongos , Naftalenos/administração & dosagem , Naftalenos/síntese química , Naftalenos/toxicidade , Piperidinas/administração & dosagem , Piperidinas/síntese química , Piperidinas/toxicidade , Ratos Wistar , Receptor Muscarínico M3/metabolismo , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H3/metabolismo
8.
Bioorg Med Chem ; 25(20): 5341-5354, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28797771

RESUMO

Novel biphenyloxy-alkyl derivatives of piperidine and azepane were synthesized and evaluated for their binding properties at the human histamine H3 receptor. Two series of compounds were obtained with a meta- and a para-biphenyl moiety. The alkyl chain spacer contained five and six carbon atoms. The highest affinity among all compounds was shown by 1-(6-(3-phenylphenoxy)hexyl)azepane (13) with a Ki value of 18nM. Two para-biphenyl derivatives, 1-(5-(4-phenylphenoxy)pentyl)piperidine (14; Ki=25nM) and 1-(5-(4-phenylphenoxy)pentyl)azepane (16; Ki=34nM), classified as antagonists in a cAMP accumulation assay (IC50=4 and 9nM, respectively), were studied in detail. Compounds 14 and 16 blocked RAMH-induced dipsogenia in rats (ED50 of 2.72mg/kg and 1.75mg/kg respectively), and showed high selectivity (hH4R vs hH3R>600-fold) and low toxicity (hERG inhibition: IC50>1.70µM; hepatotoxicity IC50>12.5µM; non-mutagenic up to 10µM). Furthermore, the metabolic stability was evaluated in vitro on human liver microsomes (HLMs) and/or rat liver microsomes (RLMs). Metabolites produced were analyzed and tentatively identified by UPLC-MS techniques. The results demonstrated easy hydroxylation of the biphenyl ring.


Assuntos
Azepinas/farmacologia , Piperidinas/farmacologia , Receptores Histamínicos H3/metabolismo , Animais , Azepinas/síntese química , Azepinas/química , Proliferação de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Células Hep G2 , Humanos , Ligantes , Masculino , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Ratos , Ratos Wistar , Receptor Muscarínico M3/antagonistas & inibidores , Receptor Muscarínico M3/metabolismo , Receptores Histamínicos H1/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA