Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 58(6): 953-960, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28254864

RESUMO

Myocardial blood flow (MBF) is the critical determinant of cardiac function. However, its response to increases in partial pressure of arterial CO2 (PaCO2), particularly with respect to adenosine, is not well characterized because of challenges in blood gas control and limited availability of validated approaches to ascertain MBF in vivo. Methods: By prospectively and independently controlling PaCO2 and combining it with 13N-ammonia PET measurements, we investigated whether a physiologically tolerable hypercapnic stimulus (∼25 mm Hg increase in PaCO2) can increase MBF to that observed with adenosine in 3 groups of canines: without coronary stenosis, subjected to non-flow-limiting coronary stenosis, and after preadministration of caffeine. The extent of effect on MBF due to hypercapnia was compared with adenosine. Results: In the absence of stenosis, mean MBF under hypercapnia was 2.1 ± 0.9 mL/min/g and adenosine was 2.2 ± 1.1 mL/min/g; these were significantly higher than at rest (0.9 ± 0.5 mL/min/g, P < 0.05) and were not different from each other (P = 0.30). Under left-anterior descending coronary stenosis, MBF increased in response to hypercapnia and adenosine (P < 0.05, all territories), but the effect was significantly lower than in the left-anterior descending coronary territory (with hypercapnia and adenosine; both P < 0.05). Mean perfusion defect volumes measured with adenosine and hypercapnia were significantly correlated (R = 0.85) and were not different (P = 0.12). After preadministration of caffeine, a known inhibitor of adenosine, resting MBF decreased; and hypercapnia increased MBF but not adenosine (P < 0.05). Conclusion: Arterial blood CO2 tension when increased by 25 mm Hg can induce MBF to the same level as a standard dose of adenosine. Prospectively targeted arterial CO2 has the capability to evolve as an alternative to current pharmacologic vasodilators used for cardiac stress testing.


Assuntos
Adenosina/administração & dosagem , Dióxido de Carbono/sangue , Estenose Coronária/sangue , Estenose Coronária/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Cães , Teste de Esforço/métodos , Imagem Multimodal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vasodilatadores
2.
Circ Cardiovasc Imaging ; 9(11)2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27903536

RESUMO

BACKGROUND: Emerging evidence indicates that persistent microvascular obstruction (PMO) is more predictive of major adverse cardiovascular events than myocardial infarct (MI) size. But it remains unclear how PMO, a phenomenon limited to the acute/subacute period of MI, drives adverse remodeling in chronic MI setting. We hypothesized that PMO resolves into chronic iron crystals within MI territories, which in turn are proinflammatory and favor adverse remodeling post-MI. METHODS AND RESULTS: Canines (n=40) were studied with cardiac magnetic resonance imaging to characterize the spatiotemporal relationships among PMO, iron deposition, infarct resorption, and left ventricular remodeling between day 7 (acute) and week 8 (chronic) post-MI. Histology was used to assess iron deposition and to examine relationships between iron content with macrophage infiltration, proinflammatory cytokine synthesis, and matrix metalloproteinase activation. Atomic resolution transmission electron microscopy was used to determine iron crystallinity, and energy-dispersive X-ray spectroscopy was used to identify the chemical composition of the iron composite. PMO with or without reperfusion hemorrhage led to chronic iron deposition, and the extent of this deposition was strongly related to PMO volume (r>0.8). Iron deposits were found within macrophages as aggregates of nanocrystals (≈2.5 nm diameter) in the ferric state. Extent of iron deposits was strongly correlated with proinflammatory burden, collagen-degrading enzyme activity, infarct resorption, and adverse structural remodeling (r>0.5). CONCLUSIONS: Crystallized iron deposition from PMO is directly related to proinflammatory burden, infarct resorption, and adverse left ventricular remodeling in the chronic phase of MI in canines. Therapeutic strategies to combat adverse remodeling could potentially benefit from taking into account the chronic iron-driven inflammatory process.


Assuntos
Circulação Coronária , Compostos Férricos/metabolismo , Mediadores da Inflamação/metabolismo , Microcirculação , Infarto do Miocárdio/complicações , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Cristalização , Modelos Animais de Doenças , Cães , Macrófagos/metabolismo , Macrófagos/patologia , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Espectrometria por Raios X , Fatores de Tempo
3.
Artigo em Inglês | MEDLINE | ID: mdl-26259581

RESUMO

BACKGROUND: Recent canines studies have shown that iron deposition within chronic myocardial infarction (CMI) influences the electric behavior of the heart. To date, the link between the iron deposition and malignant ventricular arrhythmias in humans with CMI is unknown. METHODS AND RESULTS: Patients with CMI (n=94) who underwent late-gadolinium-enhanced cardiac magnetic resonance imaging before implantable cardioverter-defibrillator implantation for primary and secondary preventions were retrospectively analyzed. The predictive values of hypointense cores (HIC) in balanced steady-state free precession images and conventional cardiac magnetic resonance imaging and ECG malignant ventricular arrhythmia parameters for the prediction of primary combined outcome (appropriate implantable cardioverter-defibrillator therapy, survived cardiac arrest, or sudden cardiac death) were studied. The use of HIC within CMI on balanced steady-state free precession as a marker of iron deposition was validated in a canine MI model (n=18). Nineteen patients met the study criteria with events occurring at a median of 249 (interquartile range of 540) days after implantable cardioverter-defibrillator placement. Of the 19 patients meeting the primary end point, 18 were classified as HIC+, whereas only 1 was HIC-. Among the cohort in whom the primary end point was not met, there were 28 HIC+ and 47 HIC- patients. Receiver operating characteristic curve analysis demonstrated an additive predictive value of HIC for malignant ventricular arrhythmias with an increased area under the curve of 0.87 when added to left ventricular ejection fraction (left ventricular ejection fraction alone, 0.68). Both cardiac magnetic resonance imaging and histological validation studies performed in canines demonstrated that HIC regions in balanced steady-state free precession images within CMI likely result from iron depositions. CONCLUSIONS: Hypointense cores within CMI on balanced steady-state free precession cardiac magnetic resonance imaging can be used as a marker of iron deposition and yields incremental information toward improved prediction of malignant ventricular arrhythmias.


Assuntos
Ferro/metabolismo , Imageamento por Ressonância Magnética , Infarto do Miocárdio/complicações , Miocárdio/metabolismo , Taquicardia Ventricular/etiologia , Fibrilação Ventricular/etiologia , Idoso , Animais , Área Sob a Curva , Meios de Contraste , Desfibriladores Implantáveis , Cães , Cardioversão Elétrica/instrumentação , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Compostos Organometálicos , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Volume Sistólico , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/prevenção & controle , Fatores de Tempo , Resultado do Tratamento , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia , Fibrilação Ventricular/prevenção & controle , Função Ventricular Esquerda
4.
Radiology ; 272(2): 397-406, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24749715

RESUMO

PURPOSE: To examine whether controlled and tolerable levels of hypercapnia may be an alternative to adenosine, a routinely used coronary vasodilator, in healthy human subjects and animals. MATERIALS AND METHODS: Human studies were approved by the institutional review board and were HIPAA compliant. Eighteen subjects had end-tidal partial pressure of carbon dioxide (PetCO2) increased by 10 mm Hg, and myocardial perfusion was monitored with myocardial blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. Animal studies were approved by the institutional animal care and use committee. Anesthetized canines with (n = 7) and without (n = 7) induced stenosis of the left anterior descending artery (LAD) underwent vasodilator challenges with hypercapnia and adenosine. LAD coronary blood flow velocity and free-breathing myocardial BOLD MR responses were measured at each intervention. Appropriate statistical tests were performed to evaluate measured quantitative changes in all parameters of interest in response to changes in partial pressure of carbon dioxide. RESULTS: Changes in myocardial BOLD MR signal were equivalent to reported changes with adenosine (11.2% ± 10.6 [hypercapnia, 10 mm Hg] vs 12% ± 12.3 [adenosine]; P = .75). In intact canines, there was a sigmoidal relationship between BOLD MR response and PetCO2 with most of the response occurring over a 10 mm Hg span. BOLD MR (17% ± 14 [hypercapnia] vs 14% ± 24 [adenosine]; P = .80) and coronary blood flow velocity (21% ± 16 [hypercapnia] vs 26% ± 27 [adenosine]; P > .99) responses were similar to that of adenosine infusion. BOLD MR signal changes in canines with LAD stenosis during hypercapnia and adenosine infusion were not different (1% ± 4 [hypercapnia] vs 6% ± 4 [adenosine]; P = .12). CONCLUSION: Free-breathing T2-prepared myocardial BOLD MR imaging showed that hypercapnia of 10 mm Hg may provide a cardiac hyperemic stimulus similar to adenosine.


Assuntos
Circulação Coronária/fisiologia , Hipercapnia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adenosina/farmacologia , Animais , Cães , Eletrocardiografia , Humanos , Aumento da Imagem/métodos , Oximetria , Reprodutibilidade dos Testes , Vasodilatadores/farmacologia
5.
PLoS One ; 8(9): e73193, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066038

RESUMO

PURPOSE: Iron deposition has been shown to occur following myocardial infarction (MI). We investigated whether such focal iron deposition within chronic MI lead to electrical anomalies. METHODS: Two groups of dogs (ex-vivo (n = 12) and in-vivo (n = 10)) were studied at 16 weeks post MI. Hearts of animals from ex-vivo group were explanted and sectioned into infarcted and non-infarcted segments. Impedance spectroscopy was used to derive electrical permittivity ([Formula: see text]) and conductivity ([Formula: see text]). Mass spectrometry was used to classify and characterize tissue sections with (IRON+) and without (IRON-) iron. Animals from in-vivo group underwent cardiac magnetic resonance imaging (CMR) for estimation of scar volume (late-gadolinium enhancement, LGE) and iron deposition (T2*) relative to left-ventricular volume. 24-hour electrocardiogram recordings were obtained and used to examine Heart Rate (HR), QT interval (QT), QT corrected for HR (QTc) and QTc dispersion (QTcd). In a fraction of these animals (n = 5), ultra-high resolution electroanatomical mapping (EAM) was performed, co-registered with LGE and T2* CMR and were used to characterize the spatial locations of isolated late potentials (ILPs). RESULTS: Compared to IRON- sections, IRON+ sections had higher[Formula: see text], but no difference in[Formula: see text]. A linear relationship was found between iron content and [Formula: see text] (p<0.001), but not [Formula: see text] (p = 0.34). Among two groups of animals (Iron (<1.5%) and Iron (>1.5%)) with similar scar volumes (7.28% ± 1.02% (Iron (<1.5%)) vs 8.35% ± 2.98% (Iron (>1.5%)), p = 0.51) but markedly different iron volumes (1.12% ± 0.64% (Iron (<1.5%)) vs 2.47% ± 0.64% (Iron (>1.5%)), p = 0.02), QT and QTc were elevated and QTcd was decreased in the group with the higher iron volume during the day, night and 24-hour period (p<0.05). EAMs co-registered with CMR images showed a greater tendency for ILPs to emerge from scar regions with iron versus without iron. CONCLUSION: The electrical behavior of infarcted hearts with iron appears to be different from those without iron. Iron within infarcted zones may evolve as an arrhythmogenic substrate in the post MI period.


Assuntos
Ferro/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Animais , Cães , Capacitância Elétrica , Eletrocardiografia , Sistema de Condução Cardíaco , Imageamento por Ressonância Magnética
6.
Circ Cardiovasc Imaging ; 6(2): 218-28, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23403335

RESUMO

BACKGROUND: Intramyocardial hemorrhage frequently accompanies large reperfused myocardial infarctions. However, its influence on the makeup and the ensuing effect on the infarcted tissue during the chronic phase remain unexplored. METHODS AND RESULTS: Patients (n=15; 3 women), recruited after successful percutaneous coronary intervention for first segment-elevation myocardial infarction, underwent cardiovascular magnetic resonance imaging on day 3 and month 6 after percutaneous coronary intervention. Patients with hemorrhagic (Hemo+) infarctions, as determined by T2* cardiovascular magnetic resonance on day 3 (n=11), showed persistent T2* losses colocalized with scar tissue on the follow-up scans, suggesting chronic iron deposition. T2* values of Hemo+ territories were significantly higher than nonhemorrhagic (Hemo-) and remote territories (P<0.001); however, T2* values of nonhemorrhagic (Hemo-) and remote territories were not different (P=0.51). Canines (n=20) subjected to ischemia-reperfusion injury (n=14) underwent cardiovascular magnetic resonance on days 3 and 56 after ischemia-reperfusion injury. Similarly, sham-operated animals (Shams; n=3) were imaged using cardiovascular magnetic resonance at similar time points. Subsequently, hearts were explanted and imaged ex vivo, and samples of Hemo+, Hemo-, remote, and Sham myocardium were isolated and stained. The extent of iron deposition ([Fe]) within each sample was measured using mass spectrometry. Hemo+ infarcts showed significant T2* losses compared with the other (control) groups (P<0.001), and Perls stain confirmed localized iron deposition. Mean [Fe] of Hemo+ was nearly an order of magnitude greater than that of the control groups (P<0.001), but no significant differences were observed among the control groups. A strong linear relationship was observed between log(T2*) and -log([Fe]); R(2)=0.7 and P<0.001. The monoclonal antibody Mac387 stains, along with Perls stains, showed preferential localization of newly recruited macrophages at the site of chronic iron deposition. CONCLUSIONS: Hemorrhagic myocardial infarction can lead to iron depositions within the infarct zones, which can be a source of prolonged inflammatory burden in the chronic phase of myocardial infarction.


Assuntos
Hemorragia/diagnóstico , Ferro/metabolismo , Imagem Cinética por Ressonância Magnética , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/diagnóstico , Miocárdio/metabolismo , Miocárdio/patologia , Intervenção Coronária Percutânea/efeitos adversos , Idoso , Animais , Modelos Animais de Doenças , Cães , Feminino , Hemorragia/etiologia , Hemorragia/metabolismo , Hemorragia/patologia , Humanos , Modelos Lineares , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Análise Multivariada , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Valor Preditivo dos Testes , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA