Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28430, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576574

RESUMO

This study investigates the effects of incorporating ZnO, TiO2, and colloidal Ag nanoparticles on the antioxidant, antimicrobial, and physical properties of biodegradable chitosan films. The research focuses on addressing the growing demand for sustainable packaging solutions that offer efficient food preservation while mitigating environmental concerns. In this investigation, the physical properties including thickness, water content, solubility, swelling degree, tensile strength, and elasticity of the chitosan films were examined. Additionally, the samples were analyzed for total polyphenol content, antimicrobial activity, and antioxidant capacity. Notably, the incorporation of ZnO nanoparticles led to the lowest water content and highest strength values among the tested films. Conversely, the addition of colloidal Ag nanoparticles resulted in films with the highest antioxidant capacities (DPPH: 32.202 ± 1.631 %). Remarkably, antimicrobial tests revealed enhanced activity with the inclusion of colloidal silver nanoparticles, yet the most potent antimicrobial properties were observed in films containing ZnO (E.coli: 2.0 ± 0.0 mm; MRSA: 2.0 ± 0.5 mm). The findings of this study hold significant implications for the advancement of edible biodegradable films, offering potential for more efficient food packaging solutions that address environmental sustainability concerns. By elucidating the effects of nanoparticle incorporation on film properties, this research contributes to the ongoing discourse surrounding sustainable packaging solutions in the food industry.

2.
Polymers (Basel) ; 13(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641203

RESUMO

The aim of the research was to produce edible packaging based on chitosan with the addition of various concentrations of extracts of blueberry, red grape and parsley marcs. Packaging was made from extrudate extracts, which were subsequently analyzed by physicochemical methods: zeta-potential, gas barrier properties, thickness, water content, solubility, swelling degree, textural properties, total polyphenol content (TPC), polyphenols by high pressure liquid chromatography (HPLC), antioxidant activity, attenuated total reflectance Fourier-Transform spectroscopy (FTIR), antimicrobial activity and determination of migration of bioactive substances. The results indicate that a higher content of plant extracts have a statistically significant (p < 0.05) influence on properties of experimentally produced edible films. Edible films produced with the highest concentrations of red grapes marc extracts showed the most advantageous properties since antimicrobial activity against E. coli were the highest in this kind of produced film. The physical properties of edible films were also improved by the addition of extracts; gas permeability toward oxygen can be defined as advantageous, as can swelling degree, which decreased with higher concentrations of extracts. The research emphasized the possibility to use plant foodstuffs by-products in the production of edible/biodegradable films, helping in the overall sustainability and eco-friendliness of food/package production.

3.
Materials (Basel) ; 13(13)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635613

RESUMO

Polyhydroxyalkanoates (PHAs) are hydrolyzable bio-polyesters. The possibility of utilizing lignocellulosic waste by-products and grape pomace as carbon sources for PHA biosynthesis was investigated. PHAs were biosynthesized by employing Cupriavidus necator grown on fructose (PHBV-1) or grape sugar extract (PHBV-2). Fifty grams of lyophilized grape sugar extract contained 19.2 g of glucose, 19.1 g of fructose, 2.7 g of pectin, 0.52 g of polyphenols, 0.51 g of flavonoids and 7.97 g of non-identified rest compounds. The grape sugar extract supported the higher production of biomass and modified the composition of PHBV-2. The biosynthesized PHAs served as matrices for the preparation of the scaffolds. The PHBV-2 scaffolds had about 44.2% lower crystallinity compared to the PHBV-1 scaffolds. The degree of crystallinity markedly influenced the mechanical behavior and enzymatic hydrolysis of the PHA scaffolds in the synthetic gastric juice and phosphate buffer saline solution with the lipase for 81 days. The higher proportion of amorphous moieties in PHBV-2 accelerated enzymatic hydrolysis. After 81-days of lasting enzymatic hydrolysis, the morphological changes of the PHBV-1 scaffolds were negligible compared to the visible destruction of the PHBV-2 scaffolds. These results indicated that the presence of pectin and phenolic moieties in PHBV may markedly change the semi-crystalline character of PHBV, as well as its mechanical properties and the course of abiotic or enzymatic hydrolysis.

4.
Bioresour Technol ; 292: 122028, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31466820

RESUMO

The aim of this work was to study the potential of selected Halomonas species for conversion of waste frying oil into polyhydroxyalkanoates (PHA). In total nine Halomonas strains were experimentally screened for their capability of PHA production. Among them, Halomonas neptunia and Halomonas hydrothermalis were identified as potent PHA producers. Initial concentration of NaCl was identified as parameter influencing PHA yields as well as molecular weight of the polymer. In addition, H. hydrothermalis was capable of biosynthesis of a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate P(3HB-co-3HV). When valerate was utilized as a precursor, the 3HV fraction in the copolymer reached high values of 50.15 mol.%. PHA production on lipid substrates by Halomonas has not been reported so far. Bearing in mind all the positive aspects of employing extremophiles in industrial biotechnology, H. hydrothermalis seems to be a very interesting halophilic strain for production of PHA using lipid substrates.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Ácido 3-Hidroxibutírico , Biotecnologia , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA