Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Res ; 55(11-12): 1048-1061, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34918601

RESUMO

Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, GSH) is a tripeptide that is part of the antioxidant defense system and contributes to numerous redox-regulatory processes. In vivo, reduced GSH and oxidized glutathione disulfide (GSSG) are present in redox equilibrium and their ratio provides important information on the cellular redox state. Here, we compared three different methods for in vivo quantification of glutathione in tissues of hypertensive rats, an accepted animal model of oxidative stress. In the present study, we used hypertensive rats (infusion of 1 mg/kg/d angiotensin-II for 7 days) to determine the levels of reduced GSH and/or GSH/GSSG ratios in different tissue samples. We used an HPLC-based method with direct electrochemical detection (HPLC/ECD) and compared it with Ellman's reagent (DTNB) dependent derivatization of reduced GSH to the GS-NTB adduct and free NTB (UV/Vis HPLC) as well as with a commercial GSH/GSSG assay (Oxiselect). Whereas all three methods indicated overall a decreased redox state in hypertensive rats, the assays based on HPLC/ECD and DTNB derivatization provided the most significant differences. We applied a direct, fast and sensitive method for electrochemical GSH detection in tissues from hypertensive animals, and confirmed its reliability for in vivo measurements by head-to-head comparison with two other established assays. The HPLC/ECD but not DTNB and Oxiselect assays yielded quantitative GSH data but all three assays reflected nicely the qualitative redox changes and functional impairment in hypertensive rats. However, especially our GSH/GSSG values are lower than reported by others pointing to problems in the work-up protocol.


Assuntos
Glutationa , Estresse Oxidativo , Animais , Ácido Ditionitrobenzoico , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Oxirredução , Ratos , Reprodutibilidade dos Testes
2.
Life Sci ; 284: 119879, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390723

RESUMO

AIMS: Doxorubicin (DOX) is an important drug for the treatment of various tumor entities. However, the occurrence of heart failure limits its application. This study investigated differential gene expression profiles in the left and right ventricles of DOX treated mice with either preserved or impaired myocardial function. We provide new mechanistic insights into the pathophysiology of DOX-induced heart failure and have discovered pathways that counteract DOX-induced cardiotoxicity. MAIN METHODS: We used in total 48 male mice and applied a chronic low dose DOX administration (5 mg/kg per injection, in total 20 mg/kg over 4 weeks) to induce heart failure. Echocardiographic parameters were evaluated one week after the final dose and mice were separated according to functional parameters into doxorubicin responding and non-responding animals. Post mortem, measurements of reactive oxygen species (ROS) and gene expression profiling was performed in separated right and left hearts. KEY FINDINGS: We detected significant ROS production in the left heart of the mice in response to DOX treatment, although interestingly, not in the right heart. We found that transcriptional changes differ between right and left heart correlating with the occurrence of myocardial dysfunction. SIGNIFICANCE: Doxorubicin induces changes in gene expression in the entire heart of animals without necessarily impairing cardiac function. We identified a set of transcripts that are associated with DOX cardiotoxicity. These might represent promising targets to ameliorate DOX-induced heart failure. Moreover, our results emphasize that parameters of left and right heart function should be evaluated during standardized echocardiography in patients undergoing DOX therapy.


Assuntos
Doxorrubicina/efeitos adversos , Testes de Função Cardíaca , Miocárdio/patologia , Transcrição Gênica , Animais , Análise por Conglomerados , Eletrocardiografia , Perfilação da Expressão Gênica , Testes de Função Cardíaca/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
3.
Metabolites ; 11(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069743

RESUMO

While the importance of the iron-load of lipocalin-2 (Lcn-2) in promoting tumor progression is widely appreciated, underlying molecular mechanisms largely remain elusive. Considering its role as an iron-transporter, we aimed at clarifying iron-loaded, holo-Lcn-2 (hLcn-2)-dependent signaling pathways in affecting renal cancer cell viability. Applying RNA sequencing analysis in renal CAKI1 tumor cells to explore highly upregulated molecular signatures in response to hLcn-2, we identified a cluster of genes (SLC7A11, GCLM, GLS), which are implicated in regulating ferroptosis. Indeed, hLcn-2-stimulated cells are protected from erastin-induced ferroptosis. We also noticed a rapid increase in reactive oxygen species (ROS) with subsequent activation of the antioxidant Nrf2 pathway. However, knocking down Nrf2 by siRNA was not sufficient to induce erastin-dependent ferroptotic cell death in hLcn-2-stimulated tumor cells. In contrast, preventing oxidative stress through N-acetyl-l-cysteine (NAC) supplementation was still able to induce erastin-dependent ferroptotic cell death in hLcn-2-stimulated tumor cells. Besides an oxidative stress response, we noticed activation of the integrated stress response (ISR), shown by enhanced phosphorylation of eIF-2α and induction of ATF4 after hLcn-2 addition. ATF4 knockdown as well as inhibition of the ISR sensitized hLcn-2-treated renal tumor cells to ferroptosis, thus linking the ISR to pro-tumor characteristics of hLcn-2. Our study provides mechanistic details to better understand tumor pro-survival pathways initiated by iron-loaded Lcn-2.

4.
Free Radic Res ; 54(4): 280-292, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32326776

RESUMO

Background: Large epidemiological studies point towards a link between the incidence of arterial hypertension, ischaemic heart disease, metabolic disease and exposure to traffic noise, supporting the role of noise exposure as an independent cardiovascular risk factor. We characterised the underlying molecular mechanisms leading to noise-dependent adverse effects on the vasculature and myocardium in an animal model of aircraft noise exposure and identified oxidative stress and inflammation as central players in mediating vascular and cardiac dysfunction. Here, we studied the impact of noise-induced oxidative DNA damage on vascular function in DNA-repair deficient 8-oxoguanine glycosylase knockout (Ogg1-/-) mice.Methods and results: Noise exposure (peak sound levels of 85 and mean sound level of 72 dB(A) applied for 4d) caused oxidative DNA damage (8-oxoguanine) and enhanced NOX-2 expression in C57BL/6 mice with synergistic increases in Ogg1-/- mice (shown by immunohistochemistry). A similar pattern was found for oxidative burst of blood leukocytes and other markers of oxidative stress (4-hydroxynonenal, 3-nitrotyrosine) and inflammation (cyclooxygenase-2). We observed additive impairment of noise exposure and genetic Ogg1 deficiency on endothelium-independent relaxation (nitroglycerine), which may be due to exacerbated oxidative DNA damage leading to leukocyte activation and oxidative aldehyde dehydrogenase inhibition.Conclusions: The finding that chronic noise exposure causes oxidative DNA damage in mice is worrisome since these potential mutagenic lesions could contribute to cancer progression. Human field studies have to demonstrate whether oxidative DNA damage is also found in urban populations with high levels of noise exposure as recently shown for workers with high occupational noise exposure.


Assuntos
Aeronaves , Dano ao DNA , DNA Glicosilases/deficiência , Exposição Ambiental/efeitos adversos , Nitratos/metabolismo , Ruído/efeitos adversos , Explosão Respiratória/fisiologia , Animais , DNA Glicosilases/genética , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia
5.
Eur Heart J ; 41(26): 2472-2483, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-31715629

RESUMO

AIMS: Electronic (e)-cigarettes have been marketed as a 'healthy' alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. METHODS AND RESULTS: Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. CONCLUSIONS: E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.


Assuntos
Encéfalo , Vapor do Cigarro Eletrônico/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , NADPH Oxidase 2/genética , Estresse Oxidativo , Animais , Encéfalo/metabolismo , Camundongos
6.
Cardiovasc Res ; 114(14): 1883-1893, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982418

RESUMO

Aims: Immune cell function involves energy-dependent processes including growth, proliferation, and cytokine production. Since the AMP-activated protein kinase (AMPK) is a crucial regulator of intracellular energy homeostasis, its expression and activity may also affect innate and adaptive immune cell responses. Therefore, we aimed to investigate the consequences of α1AMPK deletion in myelomonocytic cells on vascular function, inflammation, and hypertension during chronic angiotensin II (ATII) treatment. Methods and results: We generated a mouse strain with α1AMPK deletion in lysozyme M+ myelomonocytic cells. Compared to controls, chronic ATII infusion (1 mg/kg/day for 7 days) lead to increased vascular oxidative stress and aggravated endothelial dysfunction in LysM-Cre+ x α1AMPKfl/fl mice. This was accompanied by an increased aortic infiltration of CD11b+F4/80+ macrophages and enhanced pro-inflammatory cytokine release (tumour necrosis factor-alpha, interferon-gamma, and interleukin-6). Mechanistically, we found that increased expression of C-C chemokine receptor 2 (CCR2) in α1AMPK deficient myelomonocytic cells facilitated their recruitment to the vascular wall. In addition, expression of the ATII receptor type 1a and the oxidative burst was increased in these cells, indicating an increased susceptibility towards pro-oxidant stimuli. Conclusions: In summary, α1AMPK deletion in myelomonocytic cells aggravates vascular oxidative stress and dysfunction by enhancing their recruitment to the vascular wall and increasing their susceptibility towards pro-oxidant stimuli. Our observations suggest that metabolic control in myelomonocytic cells has profound implications for their inflammatory phenotype and may trigger the development of vascular disease.


Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Aorta/enzimologia , Doenças da Aorta/enzimologia , Citocinas/metabolismo , Deleção de Genes , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , Estresse Oxidativo , Vasodilatação , Proteínas Quinases Ativadas por AMP/genética , Angiotensina II , Animais , Aorta/fisiopatologia , Doenças da Aorta/induzido quimicamente , Doenças da Aorta/genética , Doenças da Aorta/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Predisposição Genética para Doença , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transdução de Sinais
7.
Eur Heart J ; 39(38): 3528-3539, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29905797

RESUMO

Aims: Aircraft noise causes endothelial dysfunction, oxidative stress, and inflammation. Transportation noise increases the incidence of coronary artery disease, hypertension, and stroke. The underlying mechanisms are not well understood. Herein, we investigated effects of phagocyte-type NADPH oxidase (Nox2) knockout and different noise protocols (around-the-clock, sleep/awake phase noise) on vascular and cerebral complications in mice. Methods and results: C57BL/6j and Nox2-/- (gp91phox-/-) mice were exposed to aircraft noise (maximum sound level of 85 dB(A), average sound pressure level of 72 dB(A)) around-the-clock or during sleep/awake phases for 1, 2, and 4 days. Adverse effects of around-the-clock noise on the vasculature and brain were mostly prevented by Nox2 deficiency. Around-the-clock aircraft noise of the mice caused the most pronounced vascular effects and dysregulation of Foxo3/circadian clock as revealed by next generation sequencing (NGS), suggesting impaired sleep quality in exposed mice. Accordingly, sleep but not awake phase noise caused increased blood pressure, endothelial dysfunction, increased markers of vascular/systemic oxidative stress, and inflammation. Noise also caused cerebral oxidative stress and inflammation, endothelial and neuronal nitric oxide synthase (e/nNOS) uncoupling, nNOS mRNA and protein down-regulation, and Nox2 activation. NGS revealed similarities in adverse gene regulation between around-the-clock and sleep phase noise. In patients with established coronary artery disease, night-time aircraft noise increased oxidative stress, and inflammation biomarkers in serum. Conclusion: Aircraft noise increases vascular and cerebral oxidative stress via Nox2. Sleep deprivation and/or fragmentation caused by noise triggers vascular dysfunction. Thus, preventive measures that reduce night-time aircraft noise are warranted.


Assuntos
Aeronaves , Encéfalo/fisiopatologia , Endotélio Vascular/fisiopatologia , NADPH Oxidase 2/fisiologia , Ruído dos Transportes/efeitos adversos , Privação do Sono/fisiopatologia , Animais , Relógios Circadianos/fisiologia , GMP Cíclico/metabolismo , Regulação da Expressão Gênica , Hemodinâmica/fisiologia , Humanos , Inflamação/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA