Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39211084

RESUMO

Alveolar rhabdomyosarcoma (ARMS) patients harboring PAX3-FOXO1 and PAX7-FOXO1 fusion proteins exhibit a greater incidence of tumor relapse, metastasis, and poor survival outcome, thereby underscoring the urgent need to develop effective therapies to treat this subtype of childhood cancer. To uncover mechanisms that contribute to tumor initiation, we developed a novel muscle progenitor model and used epigenomic approaches to unravel genome re-wiring events mediated by PAX3/7 fusion proteins. Importantly, these regulatory mechanisms are conserved across established ARMS cell lines, primary tumors, and orthotopic-patient derived xenografts. Among the key targets of PAX3- and PAX7-fusion proteins, we identified a cohort of oncogenes, FGF receptors, and genes essential for mitochondrial metabolism and protein translation, which we successfully targeted in preclinical trials. Our data suggest an explanation for the relative paucity of recurring mutations in this tumor, provide a compelling list of actionable targets, and suggest promising new strategies to treat this tumor.

2.
J Proteomics ; 303: 105224, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866132

RESUMO

Acute myeloid leukemia (AML) is an aggressive form of blood cancer and clinically highly heterogeneous characterized by the accumulation of clonally proliferative immature precursors of myeloid lineage leading to bone marrow failure. Although, the current diagnostic methods for AML consist of cytogenetic and molecular assessment, there is a need for new markers that can serve as useful candidates in diagnosis, prognosis and understanding the pathophysiology of the disease. This study involves the investigation of alterations in the bone marrow interstitial fluid and serum proteome of AML patients compared to controls using label-free quantitative proteomic approach. A total of 201 differentially abundant proteins were identified in AML BMIF, while in the case of serum 123 differentially abundant proteins were identified. The bioinformatics analysis performed using IPA revealed several altered pathways including FAK signalling, IL-12 signalling and production of macrophages etc. Verification experiments were performed in a fresh independent cohort of samples using MRM assays led to the identification of a panel of three proteins viz., PPBP, APOH, ENOA which were further validated in a new cohort of serum samples by ELISA. The three-protein panel could be helpful in the diagnosis, prognosis and understanding of the pathophysiology of AML in the future. BIOLOGICAL SIGNIFICANCE: Acute Myeloid Leukemia (AML) is a type haematological malignancy which constitute one third of total leukemias and it is the most common acute leukemia in adults. In the current clinical practice, the evaluation of diagnosis and progression of AML is largely based on morphologic, immunophenotypic, cytogenetic and molecular assessment. There is a need for new markers/signatures which can serve as useful candidates in diagnosis and prognosis. The present study aims to identify and validate candidate biosignature for AML which can be useful in diagnosis, prognosis and understand the pathophysiology of the disease. Here, we identified 201 altered proteins in AML BMIF and 123 in serum. Among these altered proteins, a set of three proteins viz., pro-platelet basic protein (CXCL7), enolase 1 (ENO1) and beta-2-glycoprotein 1 (APOH) were significantly increased in AML BMIF and serum suggest that this panel of proteins could help in future AML disease management and thereby improving the survival expectancy of AML patients.


Assuntos
Medula Óssea , Líquido Extracelular , Leucemia Mieloide Aguda , Proteoma , Humanos , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Masculino , Proteoma/análise , Proteoma/metabolismo , Feminino , Pessoa de Meia-Idade , Medula Óssea/metabolismo , Medula Óssea/patologia , Adulto , Líquido Extracelular/metabolismo , Biomarcadores Tumorais/sangue , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/metabolismo , Idoso , Proteômica/métodos
3.
Mol Cell Biochem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814423

RESUMO

Cancer due to its heterogeneous nature and large prevalence has tremendous socioeconomic impacts on populations across the world. Therefore, it is crucial to discover effective panels of biomarkers for diagnosing cancer at an early stage. Cancer leads to alterations in cell growth and differentiation at the molecular level, some of which are very unique. Therefore, comprehending these alterations can aid in a better understanding of the disease pathology and identification of the biomolecules that can serve as effective biomarkers for cancer diagnosis. Metabolites, among other biomolecules of interest, play a key role in the pathophysiology of cancer whose levels are significantly altered while 'reprogramming the energy metabolism', a cellular condition favored in cancer cells which is one of the hallmarks of cancer. Metabolomics, an emerging omics technology has tremendous potential to contribute towards the goal of investigating cancer metabolites or the metabolic alterations during the development of cancer. Diverse metabolites can be screened in a variety of biofluids, and tumor tissues sampled from cancer patients against healthy controls to capture the altered metabolism. In this review, we provide an overview of different metabolomics approaches employed in cancer research and the potential of metabolites as biomarkers for cancer diagnosis. In addition, we discuss the challenges associated with metabolomics-driven cancer research and gaze upon the prospects of this emerging field.

4.
Oncogene ; 43(7): 524-538, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38177411

RESUMO

Rhabdomyosarcoma tumor cells resemble differentiating skeletal muscle cells, which unlike normal muscle cells, fail to undergo terminal differentiation, underlying their proliferative and metastatic properties. We identify the corepressor TLE3 as a key regulator of rhabdomyosarcoma tumorigenesis by inhibiting the Wnt-pathway. Loss of TLE3 function leads to Wnt-pathway activation, reduced proliferation, decreased migration, and enhanced differentiation in rhabdomyosarcoma cells. Muscle-specific TLE3-knockout results in enhanced expression of terminal myogenic differentiation markers during normal mouse development. TLE3-knockout rhabdomyosarcoma cell xenografts result in significantly smaller tumors characterized by reduced proliferation, increased apoptosis and enhanced differentiation. We demonstrate that TLE3 interacts with and recruits the histone methyltransferase KMT1A, leading to repression of target gene activation and inhibition of differentiation in rhabdomyosarcoma. A combination drug therapy regime to promote Wnt-pathway activation by the small molecule BIO and inhibit KMT1A by the drug chaetocin led to significantly reduced tumor volume, decreased proliferation, increased expression of differentiation markers and increased survival in rhabdomyosarcoma tumor-bearing mice. Thus, TLE3, the Wnt-pathway and KMT1A are excellent drug targets which can be exploited for treating rhabdomyosarcoma tumors.


Assuntos
Rabdomiossarcoma , Humanos , Camundongos , Animais , Proteínas Correpressoras/genética , Histona Metiltransferases , Diferenciação Celular/genética , Rabdomiossarcoma/patologia , Antígenos de Diferenciação , Proliferação de Células/genética , Linhagem Celular Tumoral
6.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188612, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34391844

RESUMO

Cancer metastasis and drug resistance are two major obstacles in the treatment of cancer and therefore, the leading cause of cancer-associated mortalities worldwide. Hence, an in-depth understanding of these processes and identification of the underlying key players could help design a better therapeutic regimen to treat cancer. Earlier thought to be merely transcriptional junk and having passive or secondary function, recent advances in the genomic research have unravelled that long noncoding RNAs (lncRNAs) play pivotal roles in diverse physiological as well as pathological processes including cancer metastasis and drug resistance. LncRNAs can regulate various steps of the complex metastatic cascade such as epithelial-mesenchymal transition (EMT), invasion, migration and metastatic colonization, and also affect the sensitivity of cancer cells to various chemotherapeutic drugs. A substantial body of literature for more than a decade of research evince that lncRNAs can regulate gene expression at different levels such as epigenetic, transcriptional, posttranscriptional, translational and posttranslational levels, depending on their subcellular localization and through their ability to interact with DNA, RNA and proteins. In this review, we mainly focus on how lncRNAs affect cancer metastasis by modulating expression of key metastasis-associated genes at various levels of gene regulation. We also discuss how lncRNAs confer cancer cells either sensitivity or resistance to various chemo-therapeutic drugs via different mechanisms. Finally, we highlight the immense potential of lncRNAs as prognostic and diagnostic biomarkers as well as therapeutic targets in cancer.


Assuntos
Neoplasias/genética , RNA Longo não Codificante/genética , Resistência a Medicamentos , Humanos , Metástase Neoplásica , Prognóstico
7.
Biochem Biophys Res Commun ; 549: 214-220, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33706191

RESUMO

Hematopoietic syndrome contributes to mortality after exposure to high doses of low LET radiation. In this context, we have earlier demonstrated the potential of G-003 M (a combination of podophyllotoxin and rutin) in alleviating radiation-induced bone marrow suppression. Similarly, we here demonstrate that G-003 M protected mice from death (>83% protection) and increased the populations of CD 34 (Cluster of differentiation 34) as well as CD 117 (Cluster of differentiation 117) positive cell population and their colony forming capacity. This was accompanied with increase in the serum titre of granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF). Interestingly, G-003 M lowered down the titre of fms-like tyrosine kinase (Flt-3) ligands. Our results furthermore demonstrates that G-003 M facilitated the nuclear translocation of ß-catenin and upregulated the expression of Wnt 10b. Conditioning of animal with G-003 M activated the expression of survivin, inhibited the activation of Caspase-3 in CD 34/117+ progenitor stem cells and protected the bone marrow vascularity and splenic colonies in lethally irradiated animals, which collectively promoted hemopoietic recovery in lethally irradiated mice.


Assuntos
Raios gama , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Podofilotoxina/farmacologia , Rutina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Podofilotoxina/administração & dosagem , Rutina/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
8.
Drug Discov Today ; 26(4): 993-1005, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33486112

RESUMO

The limitations and adverse effects of current anticancer therapies have prompted the exploration for novel and relatively safer anticancer drugs from natural sources. India has a rich diversity of venomous snake fauna and, over the past two decades, several studies have demonstrated the anticancer potential of Indian snake venoms and their isolated components in cancer cell lines and animal tumor models. Nevertheless, anticancer drug prototypes derived from Indian snake venoms are not currently clinically available. In this review, we discuss the anticancer potential of Indian snake venoms toxins, and provide a critical analysis of the associated investigations for the successful development of candidate venom toxins as anticarcinogenic drug prototypes in clinical settings.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Venenos de Serpentes/farmacologia , Humanos , Índia
9.
Expert Rev Proteomics ; 17(6): 433-451, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32576061

RESUMO

INTRODUCTION: Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED: This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION: The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Proteoma/genética , Proteômica/tendências , Humanos , Índia , Espectrometria de Massas , Neoplasias/diagnóstico
10.
J Neurochem ; 155(6): 612-637, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460153

RESUMO

This is the first report showing unique neuritogenesis potency of Indian Cobra N. naja venom long-chain α-neurotoxin (Nn-α-elapitoxin-1) exhibiting no sequence similarity to conventional nerve growth factor, by high-affinity binding to its tyrosine kinase A (TrkA) receptor of rat pheochromocytoma (PC-12) cells without requiring low-affinity receptor p75NTR. The binding residues between Nn-α-elapitoxin-1 and mammalian TrkA receptor are predicted by in silico analysis. This binding results in a time-dependent internalization of TrkA receptor into the cytoplasm of PC-12 cells. The transcriptomic analysis has demonstrated the differential expression of 445 genes; 38 and 32 genes are up-regulated and down-regulated, respectively in the PC-12 cells post-treatment with Nn-α-elapitoxin-1. Global proteomic analysis in concurrence with transcriptomic data has also demonstrated that in addition to expression of a large number of common intracellular proteins in the control and Nn-α-elapitoxin-1-treated PC-12 cells, the latter cells also showed the expression of uniquely up-regulated and down-regulated intracellular proteins involved in diverse cellular functions. Altogether, the data from transcriptomics, proteomics, and inhibition of downstream signaling pathways by specific inhibitors, and the immunoblot analysis of major regulators of signaling pathways of neuritogenesis unambiguously demonstrate that, similar to mouse 2.5S-nerve growth factor, the activation of mitogen activated protein kinase/extracellular signal-regulated kinase is the major signaling pathway for neuritogenesis by Nn-α-elapitoxin-1. Nonetheless, fibroblast growth factor signaling and heterotrimeric G-protein signaling pathways were found to be uniquely expressed in Nn-α-elapitoxin-1-treated PC-12 cells and not in mouse 2.5S-nerve growth factor -treated cells. The TrkA binding region of Nn-α-elapitoxin-1 may be developed as a peptide-based drug prototype for the treatment of major central neurodegenerative diseases. Read the Editorial Highlight for this article on page 599.


Assuntos
Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Proteômica/métodos , Receptor trkA/metabolismo , Transcriptoma/fisiologia , Sequência de Aminoácidos , Animais , Venenos Elapídicos/genética , Células HEK293 , Humanos , Células MCF-7 , Naja , Células PC12 , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos , Receptor trkA/genética , Transcriptoma/efeitos dos fármacos
11.
Sci Rep ; 9(1): 8316, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165757

RESUMO

This study elucidates the platelet-modulating properties of two snake venom Kunitz-type serine protease inhibitors, Rusvikunin and Rusvikunin-II, from Russell's Viper venom, their native and reconstituted complexes, and two synthetic custom peptides (developed from the platelet-binding region of Rusvikunin-II) against mammalian platelet-rich plasma (PRP) and washed platelets. The Rusvikunins and their complexes demonstrated concentration-dependent deaggregation and aggregation of washed platelets independent of von Willebrand factor and/or fibrinogen requirement. At lower concentrations they abolished collagen and ADP-induced platelet aggregation, but at higher concentrations, they progressively decreased the inhibition of ADP-induced aggregation and potentiated the effect of collagen on PRP. Rusvikunin complex/Rusvikunin-II bound to and induced RGD-independent aggregation of α-chymotrypsin-treated platelets. Molecular docking studies suggested interaction of Rusvikunin-II and custom peptides with platelet GPIIb/IIIa receptor, which was validated by spectrofluorometry analysis and ELISA. This study reports, for the first time, an RGD-independent binding of a snake venom component to the platelet GPIIb/IIIa receptor.


Assuntos
Oligopeptídeos/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Venenos de Víboras/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Quimotripsina/metabolismo , Colágeno/metabolismo , Fibrinogênio/metabolismo , Cabras , Humanos , Simulação de Acoplamento Molecular , Agregação Plaquetária/efeitos dos fármacos , Ligação Proteica , Espectrometria de Fluorescência , Inibidor da Tripsina de Soja de Kunitz
12.
Apoptosis ; 24(3-4): 326-340, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30725351

RESUMO

It has been well established that radiation-induced gastrointestinal injury is manifested through loss of intestinal crypt stem cells and disruption of the mucosal layers, resulting in diarrhoea, weight loss, electrolyte imbalance, infection and mortality. Podophyllotoxin and rutin in combination (G-003M) has been reported to regulate endogenous cellular antioxidant defense systems and inflammatory response. However, the mechanism by which G-003M ameliorates radiation-induced intestinal stem cell (ISC) injury remains unclear. Here, we hypothesize the radioprotective potential of G-003M would amplify the intestinal crypt stem cells through upregulation of Wnt/ß-catenin signaling and accelerate the reconstitution of the irradiated intestine. Our results showed significant functional and structural intestine regeneration in irradiated animals following G-003M treatment which resulted in improved animal survival. Immunohistochemical examination revealed an enhancement in Lgr5+ ve crypt stem cells. Increased ß-catenin nuclear translocation resulted in upregulation of ß-catenin target genes that supported ISC renewal and expansion in G-003M-treated mice, as compared to IR-treated mice. However, G-003M could not rescue the Wnt knockdown cohorts (XAV939 treated) which exhibited greater incidence of intestinal apoptosis, DNA damage and crypt depopulation upon radiation exposure. These findings suggest the involvement of Wnt pathway during G-003M mediated amelioration of IR-induced ISC injury. G-003M also minimised acute inflammation by restricting the infiltration of immune cells into the intestinal venules. Furthermore, G-003M treated animals showed improved anti-tumor response compared to FDA approved Amifostine. Taken together, our findings suggest that G-003M may be used as a potential countermeasure for radiation injuries as well as an adjuvant during anti-cancer therapy.


Assuntos
Intestinos/efeitos dos fármacos , Podofilotoxina/fisiologia , Lesões por Radiação/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Rutina/fisiologia , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Quimioterapia Combinada/métodos , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Protetores contra Radiação/farmacologia , Células-Tronco/metabolismo , Regulação para Cima/efeitos dos fármacos , beta Catenina/metabolismo
13.
Sci Rep ; 8(1): 6210, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670183

RESUMO

The harnessing of medicinal plants containing a plethora of bioactive molecules may lead to the discovery of novel, potent and safe therapeutic agents to treat thrombosis-associated cardiovascular diseases. A 35 kDa (m/z 34747.5230) serine protease (lunathrombase) showing fibrin(ogen)olytic activity and devoid of N- and O- linked oligosaccharides was purified from an extract of aqueous leaves from L. indica. The LC-MS/MS analysis, de novo sequencing, secondary structure, and amino acid composition determination suggested the enzyme's novel characteristic. Lunathrombase is an αß-fibrinogenase, demonstrating anticoagulant activity with its dual inhibition of thrombin and FXa by a non-enzymatic mechanism. Spectrofluorometric and isothermal calorimetric analyses revealed the binding of lunathrombase to fibrinogen, thrombin, and/or FXa with the generation of endothermic heat. It inhibited collagen/ADP/arachidonic acid-induced mammalian platelet aggregation, and demonstrated antiplatelet activity via COX-1 inhibition and the upregulation of the cAMP level. Lunathrombase showed in vitro thrombolytic activity and was not inhibited by endogenous protease inhibitors α2 macroglobulin and antiplasmin. Lunathrombase was non-cytotoxic to mammalian cells, non-hemolytic, and demonstrated dose-dependent (0.125-0.5 mg/kg) in vivo anticoagulant and plasma defibrinogenation activities in a rodent model. Lunathrombase (10 mg/kg) did not show toxicity or adverse pharmacological effects in treated animals.


Assuntos
Anticoagulantes/farmacologia , Fibrinolíticos/farmacologia , Lamiaceae/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Serina Proteases/farmacologia , Animais , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Fatores de Coagulação Sanguínea/química , Fatores de Coagulação Sanguínea/isolamento & purificação , Fatores de Coagulação Sanguínea/farmacologia , AMP Cíclico , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Hemólise/efeitos dos fármacos , Oligossacarídeos/química , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/farmacologia , Serina Proteases/química , Serina Proteases/isolamento & purificação , Análise Espectral
14.
Int J Biol Macromol ; 111: 639-648, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29325746

RESUMO

A novel apyrase from Russell's viper venom (RVV) was purified and characterized, and it was named Ruviapyrase (Russell's viper apyrase). It is a high molecular weight (79.4 kDa) monomeric glycoprotein that contains 2.4% neutral sugars and 58.4% N-linked oligosaccharides and strongly binds to Concanavalin A. The LC-MS/MS analysis did not identify any protein in NCBI protein database, nevertheless some de novo sequences of Ruviapyrase showed putative conserved domain of apyrase superfamily. Ruviapyrase hydrolysed adenosine triphosphate (ATP) to a significantly greater extent (p < .05) as compared to adenosine diphosphate (ADP); however, it was devoid of 5'-nucleotidase and phosphodiesterase activities. The Km and Vmax values for Ruviapyrase towards ATP were 2.54 µM and 615 µM of Pi released min-1, respectively with a turnover number (Kcat) of 24,600 min-1. Spectrofluorometric analysis demonstrated interaction of Ruviapyrase with ATP and ADP at Kd values of 0.92 nM and 1.25 nM, respectively. Ruviapyrase did not show cytotoxicity against breast cancer (MCF-7) cells and haemolytic activity, it exhibited marginal anticoagulant and strong antiplatelet activity, and dose-dependently reversed the ADP-induced platelet aggregation. The catalytic activity and platelet deaggregation property of Ruviapyrase was significantly inhibited by EDTA, DTT and IAA, and neutralized by commercial monovalent and polyvalent antivenom.


Assuntos
Antivenenos/química , Apirase/química , Daboia , Venenos de Víboras/enzimologia , Animais , Anticoagulantes , Antivenenos/farmacologia , Apirase/isolamento & purificação , Apirase/farmacologia , Plaquetas/efeitos dos fármacos , Humanos , Agregação Plaquetária/efeitos dos fármacos
15.
Front Immunol ; 8: 658, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649248

RESUMO

Pneumonitis and pulmonary fibrosis are predominant consequences of radiation exposure, whether planned or accidental. The present study, demonstrates radioprotective potential of a formulation, prepared by combining podophyllotoxin and rutin (G-003M), in mice exposed to 11 Gy thoracic gamma radiation (TGR). Treated mice were observed for survival and other symptomatic features. Formation of reactive oxygen species (ROS)/nitric oxide (NO) was measured in bronchoalveolar lavage cells. DNA damage and cell death were assessed in alveolar cells by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Total protein (TP), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) were measured in bronchoalveolar lavage fluid (BALF)/serum of mice to assess lung vascular permeability. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-ß1 (TGF-ß1), cluster of differentiation 45, inducible nitric oxide synthase (iNOS), and nitrotyrosine were also estimated in lungs/BALF of differentially treated mice. Our observations revealed 100% survival in G-003M-pretreated mice against 66.50% in 11 Gy TGR exposed. Other symptoms like reduction in graying of hair, weight loss, and breathing rate were also observed in pretreated groups. Significant decline in ROS/NO and cell death in formulation pretreated mice were also observed. Decreased level of TP, LDH, and ALP in BALF/serum samples revealed G-003M-induced inhibition in lung permeability. Level of IL-6, TNF-α, and TGF-ß1 in the lungs of these mice was found corresponding to control group at 8 weeks posttreatment. On the contrary, these cytokines raised significantly in 11 Gy TGR-exposed mice. Lung pneumonitis and fibrosis were found significantly countered in these mice. The observations revealed that G-003M could regulate immune system by curtailing radiation-induced oxidative and inflammatory stress, which has helped in minimizing radiation-inflicted pneumonitis and fibrosis.

16.
Front Immunol ; 8: 183, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289414

RESUMO

The present study is aimed to investigate the radioprotective efficacy of G-003M (combination of podophyllotoxin and rutin) against gamma radiation-induced oxidative stress and subsequent cell death in mice bone marrow and spleen. Prophylactic administration of G-003M (-1 h) rendered more than 85% survival in mice exposed to 9 Gy (lethal dose) with dose reduction factor of 1.26. G-003M pretreated mice demonstrated significantly reduced level of reactive oxygen species, membrane lipid peroxidation, and retained glutathione level. In the same group, we obtained increased expression of master redox regulator, nuclear factor erythroid-derived like-2 factor (Nrf-2), and its downstream targets (heme oxygenase-1, Nqo-1, glutathione S-transferase, and thioredoxin reductase-1). In addition, G-003M preadministration has also shown a significant reduction in Keap-1 level (Nrf-2 inhibitor). Radiation-induced lethality was significantly amended in combination-treated (G-003M) mice as demonstrated by reduced 8-OHdG, annexin V FITC+ cells, and restored mitochondrial membrane potential. Expression of antiapoptotic protein Bcl-2 and Bcl-xL was restored in G-003M pretreated group. However, proapoptotic proteins (Puma, Bax, Bak, Caspase-3, and Caspase-7) were significantly declined in this group. Further analysis of immune cells revealed G-003M-mediated restoration of CD3 and CD19 receptor, which was found decreased to significant level following irradiation. Similarly, Gr-1, a marker of granulocytes, was also retained by G-003M administration prior to radiation. Modulatory potential of this formulation (G-003M) can be exploited as a safe and effective countermeasure against radiation-induced lymphohemopoietic injury.

17.
PLoS One ; 11(12): e0168525, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28036347

RESUMO

Development of an effective radio protector to minimise radiation-inflicted damages have largely failed owing to inherent toxicity of most of the agents examined so far. This study is centred towards delivering protection to lethally irradiated mice by pre-administration of a safe formulation G-003M (combination of podophyllotoxin and rutin) majorly through regulation of inflammatory and cell death pathways in mice. Single intramuscular dose of G-003M injected 60 min prior to 9 Gy exposure rescued 89% of whole body lethally irradiated C57BL/6J mice. Studies have revealed reduction in radiation induced reactive oxygen species (ROS), nitric oxide (NO) generation, prostaglandin E2 (PGE2) levels and intestinal apoptosis in G-003M pre-treated mice intestine. Restricted nuclear translocation of redox-sensitive Nuclear factor-κB (NF-κB) and subsequent downregulation of cyclo-oxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS; EC 1.14.13.39) and tumor necrosis factor (TNF-α) levels demonstrated the anti-inflammatory effect that G-003M exerts. Support to early hematopoietic recovery was exhibited through G-003M mediated induction of granulocyte colony stimulating factor (G-CSF) and interleukin (IL-6) levels in lethally irradiated mice. Considerable attenuation in radiation induced morphological damage to the intestinal villi, crypts and mucosal layers was observed in G-003M pre-treated mice. Additionally, our formulation did not reduce the sensitivity of tumor tissue to radiation. Altogether, these results suggest that G-003M ameliorates the deleterious effects of radiation exposure by minimising ROS and NO generation and effectively regulating inflammatory and cell death pathways. Mechanism of protection elucidated in the current study demonstrates that G-003M can be used as a safe and effective radio protective agent in radiotherapy for human application.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Podofilotoxina/farmacologia , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/metabolismo , Rutina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Quimioterapia Combinada/métodos , Trato Gastrointestinal/efeitos da radiação , Heme Oxigenase-1/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Protetores contra Radiação , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Environ Mol Mutagen ; 57(6): 455-68, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27338557

RESUMO

DNA damage can be assessed by the quantitation of γH2AX foci that form at DSB sites. This study examines the generation and persistence of γH2AX foci, variability in foci size after acute and fractionated radiation exposure, and the effect of pretreatment with a safe radioprotective formulation termed G-003M on foci generation and persistence. G-003M contains a combination of podophyllotoxin and rutin hydrate, and was administered intramuscularly to rabbits 1 hr prior to Co(60) gamma irradiation. Rabbits were assigned to one of the following treatment groups: untreated, G-003M alone, irradiated (single dose 8 Gy, fractionated 2 Gy/day for 4 days or single dose 2 Gy) or G-003M preadministration followed by radiation exposure. Foci continuously persisted for a week in peripheral blood mononuclear cells of rabbits exposed to a single 8 Gy dose. However, the number of foci gradually decreased after reaching a maximum at 1 h. In rabbits exposed to fractionated radiation, foci detected 1 hr after the final exposure were significantly larger (P < 0.001) than in rabbits exposed to a single 8 Gy dose, but disappeared completely after 24 h. In both groups, foci reappeared on days 11-15 in terminally ill animals. G-003M pretreatment significantly (P < 0.05) attenuated the formation of γH2AX foci in all irradiated rabbits. This study reveals that γH2AX focus assessment could be used to confirm radiation exposure, that focus size reflects the type of radiation exposure (acute or fractionated), that the re-appearance of foci is a strong indicator of imminent death in animals, and that G-003M provides protection against radiation. Environ. Mol. Mutagen. 57:455-468, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Raios gama/efeitos adversos , Loci Gênicos , Histonas/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Podofilotoxina/farmacologia , Protetores contra Radiação/farmacologia , Rutina/farmacologia , Animais , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Relação Dose-Resposta à Radiação , Sinergismo Farmacológico , Citometria de Fluxo , Histonas/genética , Cinética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Podofilotoxina/administração & dosagem , Coelhos , Doses de Radiação , Protetores contra Radiação/administração & dosagem , Rutina/administração & dosagem , Irradiação Corporal Total
19.
Food Chem Toxicol ; 91: 141-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26993954

RESUMO

The present study was conceptualized with the aim of developing a safe radioprotector for human application against radiation induced toxicity. For this study, a formulation (G-002M) prepared by combining three active principles isolated from rhizomes of Podophyllum hexandrum, was evaluated for its potential to protect genomic DNA of human blood cells exposed to different doses of radiation (5,7&10Gy). Blood samples were pretreated (-1hr to exposure) with G-002M. Parameters of Premature Chromosome Condensation (PCC) assay like PCC-index, PCC-rings and PCC-fragments were used to estimate radiation induced chromosomal aberrations. Radiation (7Gy) induce ROS generation and its modulation by G-002M was determined by flow-cytometry and fluorescent microscopy while apoptosis (0,2,24&48 hr) was analyzed using TUNEL assay. Effect on spindle organization in G2/M arrested cells by all the three compounds individually was studied using immunofluorescence microscopy. Irradiation caused dose dependent linear increase in PCC-rings and fragments, while decline in PCC index. G-002M pretreatment significantly decreased these chromosomal aberrations at all the radiation doses and assisted cell survival as indicated by increased PCC index compared with radiation only group. Significant decrease in radiation induced intracellular ROS (45 ± 3%) and apoptosis (49.9%) was also exhibited by the formulation. On podophyllotoxin treatment, most of the cells have shown blocked spindles however, depicted normal arrangement. G-002M also demonstrated a highly significant Dose Modifying Factor or DMF (PCC-rings: 2.27 and PCC-fragments: 1.60). Present study based on many parameters along with DMF study, strongly suggests that G-002M is an effective formulation with a potential to minimize chromosomal damage even at very high radiation doses.


Assuntos
Apoptose , Aberrações Cromossômicas , Glucosídeos/química , Linfócitos/efeitos dos fármacos , Podofilotoxina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutina/farmacologia , Humanos , Linfócitos/metabolismo , Podofilotoxina/química , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA