Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(13): 2416-2424, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37310119

RESUMO

Positron emission tomography (PET) is a powerful tool for studying neuroinflammatory diseases; however, current PET biomarkers of neuroinflammation possess significant limitations. We recently reported a promising dendrimer PET tracer ([18F]OP-801), which is selectively taken up by reactive microglia and macrophages. Here, we describe further important characterization of [18F]OP-801 in addition to optimization and validation of a two-step clinical radiosynthesis. [18F]OP-801 was found to be stable in human plasma for 90 min post incubation, and human dose estimates were calculated for 24 organs of interest; kidneys and urinary bladder wall without bladder voiding were identified as receiving the highest absorbed dose. Following optimization detailed herein, automated radiosynthesis and quality control (QC) analyses of [18F]OP-801 were performed in triplicate in suitable radiochemical yield (6.89 ± 2.23% decay corrected), specific activity (37.49 ± 15.49 GBq/mg), and radiochemical purity for clinical imaging. Importantly, imaging mice with tracer (prepared using optimized methods) 24 h following the intraperitoneal injection of liposaccharide resulted in the robust brain PET signal. Cumulatively, these data enable clinical translation of [18F]OP-801 for imaging reactive microglia and macrophages in humans. Data from three validation runs of the clinical manufacturing and QC were submitted to the Food and Drug Administration (FDA) as part of a Drug Master File (DMF). Subsequent FDA approval to proceed was obtained, and a phase 1/2 clinical trial (NCT05395624) for first-in-human imaging in healthy controls and patients with amyotrophic lateral sclerosis is underway.


Assuntos
Microglia , Tomografia por Emissão de Pósitrons , Animais , Humanos , Camundongos , Encéfalo , Radioisótopos de Flúor/química , Macrófagos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto
2.
J Nucl Med ; 64(1): 137-144, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981900

RESUMO

For the past several decades, chimeric antigen receptor T-cell therapies have shown promise in the treatment of cancers. These treatments would greatly benefit from companion imaging biomarkers to follow the trafficking of T cells in vivo. Methods: Using synthetic biology, we engineered T cells with a chimeric receptor synthetic intramembrane proteolysis receptor (SNIPR) that induces overexpression of an exogenous reporter gene cassette on recognition of specific tumor markers. We then applied a SNIPR-based PET reporter system to 2 cancer-relevant antigens, human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor variant III (EGFRvIII), commonly expressed in breast and glial tumors, respectively. Results: Antigen-specific reporter induction of the SNIPR PET T cells was confirmed in vitro using green fluorescent protein fluorescence, luciferase luminescence, and the HSV-TK PET reporter with 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]FHBG). T cells associated with their target antigens were successfully imaged using PET in dual-xenograft HER2+/HER2- and EGFRvIII+/EGFRvIII- animal models, with more than 10-fold higher [18F]FHBG signals seen in antigen-expressing tumors versus the corresponding controls. Conclusion: The main innovation found in this work was PET detection of T cells via specific antigen-induced signals, in contrast to reporter systems relying on constitutive gene expression.


Assuntos
Neoplasias da Mama , Glioblastoma , Animais , Humanos , Feminino , Linfócitos T , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Genes Reporter
3.
Pharmaceutics ; 14(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36297529

RESUMO

The advancement of biomedicine in a socioeconomically sustainable manner while achieving efficient patient-care is imperative to the health and well-being of society. Magnetic systems consisting of iron based nanosized components have gained prominence among researchers in a multitude of biomedical applications. This review focuses on recent trends in the areas of diagnostic imaging and drug delivery that have benefited from iron-incorporated nanosystems, especially in cancer treatment, diagnosis and wound care applications. Discussion on imaging will emphasise on developments in MRI technology and hyperthermia based diagnosis, while advanced material synthesis and targeted, triggered transport will be the focus for drug delivery. Insights onto the challenges in transforming these technologies into day-to-day applications will also be explored with perceptions onto potential for patient-centred healthcare.

4.
Nanomedicine ; 42: 102542, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35189393

RESUMO

Glycans govern cellular signaling through glycan-protein and glycan-glycan crosstalk. Disruption in the crosstalk initiates 'rogue' signaling and pathology. Nanomaterials supply platforms for multivalent displays of glycans, mediate 'rogue' signal correction, and provide disease treatment modalities (therapeutics). The decorated glycans also target overexpressed lectins on unhealthy cells and direct metal nanoparticles such as gold, iron oxide, and quantum dots to the site of infection. The nanoparticles inform us about the state of the disease (diagnosis) through their distinct optical, magnetic, and electronic properties. Glyco-nanoparticles can sense disease biomarkers, report changes in protein-glycan interactions, and safeguard quality control (analysis). Here we review the current state of glyco-nanotechnology focusing on diagnosis, therapeutics, and analysis of human diseases. We highlight how glyco-nanotechnology could aid in improving diagnostic methods for the detection of disease biomarkers with magnetic resonance imaging (MRI) and fluorescence imaging (FLI), enhance therapeutics such as anti-adhesive treatment of cancer and vaccines against pneumonia, and advance analysis such as the rapid detection of pharmaceutical heparin contaminant and recombinant SARS-COV-2 spike protein. We illustrate these progressions and outline future potentials of glyco-nanotechnology in advancing human health.


Assuntos
COVID-19 , Nanopartículas Metálicas , Biomarcadores , COVID-19/diagnóstico , Humanos , Polissacarídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
5.
Methods Mol Biol ; 2303: 687-694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626416

RESUMO

Glycosaminoglycans (GAGs) play crucial roles in several biological processes including cell division, angiogenesis, anticoagulation, neurogenesis, axon guidance and growth, and viral and bacterial infections among others. The GAG cleaving hydrolases/lyases play a major role in the control of GAG structures, functions, and turn over. Dysregulation of GAG cleaving enzymes in vivo are linked to a number of human diseases including cancer, diabetes, atherosclerosis, arthritis, inflammation, and cardiovascular diseases. Several GAG cleaving enzymes are widely used for studying GAG glycobiology: heparitinases, chondroitinases, heparanases, hyaluronidases, and keratanases. Herein, we describe a method to synthesize four distinct nanometal surface energy transfer (NSET)-based gold-GAG-dye conjugates (nanosensors). Heparin, chondroitin sulfate, heparan sulfate, and hyaluronic acid are covalently linked with distinct fluorescent dyes and then immobilized on gold nanoparticles (AuNPs) to build nanosensors that serve as excellent substrates for GAG cleaving enzymes. Upon treatment of nanosensors with their respective GAG cleaving enzymes, dye-labeled oligosaccharides/disaccharides are released from AuNPs resulting in enhanced fluorescence recovery. These nanosensors have a great promise as diagnostic tools in various human pathophysiological conditions for detecting dysregulated expression of GAG cleaving enzymes and also as a sensitive analytical tool for assessing the quality control of pharmaceutical grade heparin polysaccharides that are produced in millions of small- and medium-sized animal slaughter houses worldwide.


Assuntos
Nanopartículas Metálicas , Animais , Sulfatos de Condroitina , Glicosaminoglicanos , Ouro , Heparina , Heparitina Sulfato , Humanos
6.
Mol Pharm ; 18(1): 451-460, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33315406

RESUMO

Glycosaminoglycans (GAGs) such as heparan sulfate and chondroitin sulfate decorate all mammalian cell surfaces. These mucopolysaccharides act as coreceptors for extracellular ligands, regulating cell signaling, growth, proliferation, and adhesion. In glioblastoma, the most common type of primary malignant brain tumor, dysregulated GAG biosynthesis results in altered chain length, sulfation patterns, and the ratio of contributing monosaccharides. These events contribute to the loss of normal cellular function, initiating and sustaining malignant growth. Disruption of the aberrant cell surface GAGs with small molecule inhibitors of GAG biosynthetic enzymes is a potential therapeutic approach to blocking the rogue signaling and proliferation in glioma, including glioblastoma. Previously, 4-azido-xylose-α-UDP sugar inhibited both xylosyltransferase (XYLT-1) and ß-1,4-galactosyltransferase-7 (ß-GALT-7)-the first and second enzymes of GAG biosynthesis-when microinjected into a cell. In another study, 4-deoxy-4-fluoro-ß-xylosides inhibited ß-GALT-7 at 1 mM concentration in vitro. In this work, we seek to solve the enduring problem of drug delivery to human glioma cells at low concentrations. We developed a library of hydrophobic, presumed prodrugs 4-deoxy-4-fluoro-2,3-dibenzoyl-(α- or ß-) xylosides and their corresponding hydrophilic inhibitors of XYLT-1 and ß-GALT-7 enzymes. The prodrugs were designed to be activatable by carboxylesterase enzymes overexpressed in glioblastoma. Using a colorimetric MTT assay in human glioblastoma cell lines, we identified a prodrug-drug pair (4-nitrophenyl-α-xylosides) as lead drug candidates. The candidates arrest U251 cell growth at an IC50 = 380 nM (prodrug), 122 µM (drug), and U87 cells at IC50 = 10.57 µM (prodrug). Molecular docking studies were consistent with preferred binding of the α- versus ß-nitro xyloside conformer to XYLT-1 and ß-GALT-7 enzymes.


Assuntos
Glioblastoma/metabolismo , Glicosídeos/metabolismo , Animais , Linhagem Celular Tumoral , Sulfatos de Condroitina/metabolismo , Galactosiltransferases/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Simulação de Acoplamento Molecular/métodos , Pentosiltransferases/metabolismo , Pró-Fármacos/metabolismo , UDP Xilose-Proteína Xilosiltransferase
7.
Mol Cancer Res ; 19(1): 150-161, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028660

RESUMO

Signaling from multiple receptor tyrosine kinases (RTK) contributes to therapeutic resistance in glioblastoma (GBM). Heparan sulfate (HS), present on cell surfaces and in the extracellular matrix, regulates cell signaling via several mechanisms. To investigate the role for HS in promoting RTK signaling in GBM, we generated neural progenitor cells deficient for HS by knockout of the essential HS-biosynthetic enzyme Ext1, and studied tumor initiation and progression. HS-null cells had decreased proliferation, invasion, and reduced activation of multiple RTKs compared with control. In vivo tumor establishment was significantly decreased, and rate of tumor growth reduced with HS-deficient cells implanted in an HS-poor microenvironment. To investigate if HS regulates RTK activation through platelet-derived growth factor receptor α (PDGFRα) signaling, we removed cell surface HS in patient-derived GBM lines and identified reduced cell surface PDGF-BB ligand. Reduced ligand levels were associated with decreased phosphorylation of PDGFRα, suggesting HS promotes ligand-receptor interaction. Using human GBM tumorspheres and a murine GBM model, we show that ligand-mediated signaling can partially rescue cells from targeted RTK inhibition and that this effect is regulated by HS. Indeed, tumor cells deficient for HS had increased sensitivity to EGFR inhibition in vitro and in vivo. IMPLICATIONS: Our study shows that HS expressed on tumor cells and in the tumor microenvironment regulates ligand-mediated signaling, promoting tumor cell proliferation and invasion, and these factors contribute to decreased tumor cell response to targeted RTK inhibition.


Assuntos
Glioblastoma/genética , Heparitina Sulfato/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Transdução de Sinais
8.
PLoS One ; 12(8): e0182301, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763512

RESUMO

Angiogenesis, the sprouting of new blood vessels from existing vasculature, involves multiple complex biological processes, and it is an essential step for hemostasis, tissue healing and regeneration. Angiogenesis stimulants can ameliorate human disease conditions including limb ischemia, chronic wounds, heart disease, and stroke. The current strategies to improve the bioavailability of pro-angiogenic growth factors, including VEGF and FGF2, have remained largely unsuccessful. This study demonstrates that small molecules, termed click-xylosides, can promote angiogenesis in the in vitro matrigel tube formation assay and the ex ovo chick chorioallantoic membrane assay, depending on their aglycone moieties. Xyloside treatment enhances network connectivity and cell survivability, thereby, maintaining the network structures on matrigel culture for an extended period of time. These effects were achieved via the secreted xyloside-primed glycosaminoglycans (GAG) chains that in part, act through an ERK1/2 mediated signaling pathway. Through the remodeling of GAGs in the extracellular matrix of endothelial cells, the glycan approach, involving xylosides, offers great potential to effectively promote therapeutic angiogenesis.


Assuntos
Glicosídeos/química , Neovascularização Fisiológica , Polissacarídeos/química , Indutores da Angiogênese/uso terapêutico , Animais , Proliferação de Células , Sobrevivência Celular , Embrião de Galinha , Membrana Corioalantoide/química , Feminino , Glicosaminoglicanos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Regeneração
9.
Methods Mol Biol ; 1229: 517-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25325977

RESUMO

Xylosides modulate the biosynthesis of sulfated glycosaminoglycans (GAGs) in various cell types. A new class of xylosides called "click-xylosides" has been synthesized for their biostability, ease of chemical synthesis, and tunable sulfated GAG biogenesis in vitro and in vivo. These click-xylosides have several therapeutic and biomedical applications in the regulation of angiogenesis, tumor inhibition, and regeneration. This protocol focuses on the synthesis of click-xylosides, their cellular priming activities, and biomedical applications.


Assuntos
Tecnologia Biomédica/métodos , Glicosídeos/biossíntese , Acetilação , Animais , Células CHO , Bovinos , Química Click , Cricetinae , Cricetulus , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Glicosídeos/química , Neovascularização Fisiológica
10.
Photochem Photobiol Sci ; 13(2): 231-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24096539

RESUMO

Numerous proteases are known to be necessary for cancer development and progression including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins. The goal of this research is to develop an Fe/Fe3O4 nanoparticle-based system for clinical diagnostics, which has the potential to measure the activity of cancer-associated proteases in biospecimens. Nanoparticle-based "light switches" for measuring protease activity consist of fluorescent cyanine dyes and porphyrins that are attached to Fe/Fe3O4 nanoparticles via consensus sequences. These consensus sequences can be cleaved in the presence of the correct protease, thus releasing a fluorescent dye from the Fe/Fe3O4 nanoparticle, resulting in highly sensitive (down to 1 × 10(-16) mol l(-1) for 12 proteases), selective, and fast nanoplatforms (required time: 60 min).


Assuntos
Ensaios Enzimáticos/métodos , Nanopartículas de Magnetita/química , Nanotecnologia/métodos , Neoplasias/enzimologia , Peptídeo Hidrolases/metabolismo , Espectrometria de Fluorescência/métodos , Calibragem , Carbocianinas/química , Sequência Consenso , Transferência Ressonante de Energia de Fluorescência , Metaloproteinase 13 da Matriz/química , Metaloproteinase 13 da Matriz/metabolismo , Peptídeo Hidrolases/química , Porfirinas/química , Reprodutibilidade dos Testes , Propriedades de Superfície
11.
J Am Chem Soc ; 135(18): 6842-5, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23611424

RESUMO

A prototype of a nano solar cell containing the mycobacterial channel protein MspA has been successfully designed. MspA, an octameric transmembrane channel protein from Mycobacterium smegmatis, is one of the most stable proteins known to date. Eight Ruthenium(II) aminophenanthroline-viologen maleimide Diads (Ru-Diads) have been successfully bound to the MspA mutant MspAA96C via cysteine-maleimide bonds. MspA is known to form double layers in which it acts as nanoscopic surfactant. The nanostructured layer that is formed by (Ru-Diad)8MspA at the TiO2 electrode is photochemically active. The resulting "protein nano solar cell" features an incident photon conversion efficiency of 1% at 400 nm. This can be regarded as a proof-of-principle that stable proteins can be successfully integrated into the design of solar cells.


Assuntos
Fontes de Energia Elétrica , Porinas/química , Energia Solar , Viologênios/química , Eletrodos , Nanoestruturas/química , Compostos Organometálicos/química , Fenantrolinas/química , Rutênio/química , Propriedades de Superfície , Titânio/química
12.
J Org Chem ; 78(5): 1903-9, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23095100

RESUMO

Two photochromic spirodihydroindolizine/betaine systems for tethering to peptides and proteins via a maleimide function have been prepared. The absorption spectra of the betaines are in the red region of the visible spectrum and in the near-IR spectral domain, which are suitable energies of light for future in vivo applications. The half-times of cyclization have been determined for both DHI/betaine systems. The findings are consistent with a thermal barrier of varying size between the transoid and cisoid conformers of the betaines.


Assuntos
Betaína/química , Indolizinas/química , Maleimidas/química , Compostos de Espiro/química , Estrutura Molecular , Fotoquímica , Espectroscopia de Luz Próxima ao Infravermelho
13.
Photochem Photobiol Sci ; 11(7): 1251-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22565929

RESUMO

We have transfected murine neural stem cells (NSCs) and rat umbilical cord matrix-derived stem cells (RUCMSCs) with a plasmid expressing gaussia luciferase (gLuc). These cells are engineered to secrete the luciferase. We have used gLuc containing supernatant from culturing the NSCs to perform in vitro photodynamic therapy of murine melanoma cells (B16F10), and RUCMSCs to perform in vivo PDT of lung melanomas in C57BL/6 mice. The treatment system was comprised of aminolevulic acid as a prodrug for the synthesis of the photosensitizer protoporphyrin IX, gaussia luciferase, and its' substrate coelenterazine. A significant reduction of the number of live melanoma cells in vitro and a borderline significant retardation of tumour growth in vivo was observed after coelenterazine-mediated PDT.


Assuntos
Células-Tronco/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Sangue Fetal/citologia , Imidazóis/química , Imidazóis/farmacologia , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oxirredução , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/toxicidade , Plasmídeos/metabolismo , Protoporfirinas/biossíntese , Protoporfirinas/uso terapêutico , Protoporfirinas/toxicidade , Pirazinas/química , Pirazinas/farmacologia , Ratos , Transplante de Células-Tronco , Células-Tronco/citologia , Transfecção
14.
Inorg Chem ; 51(8): 4521-6, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22443511

RESUMO

We report a new class of derivatized 4,4'-bipyridinium ligands for use in synthesizing highly fluorescent, extremely stable, water-soluble CdSe and CdTe quantum dots (QDs) for bioconjugation. We employed an evaporation-condensation technique, also known as solvated metal atom dispersion (SMAD), followed by a digestive ripening procedure. This method has been used to synthesize both metal nanoparticles and semiconductors in the gram scale with several stabilizing ligands in various solvents. The SMAD technique comprised evaporation condensation and stabilization of CdSe or CdTe in tetrahydrofuran. The as-prepared product was then digestively ripened in both water and dimethyl formamide, leading to narrowing of the particle size distributions. The ligands were synthesized by nucleophilic substitution (S(N)2) reactions using 4,4'-bipyridine as a nucleophile. Confocal microscopy images revealed the orange color of the nanocrystalline QDs with diameters of ~5 nm. The size has been confirmed by using transmission electron microscopy. As a part of our strategy, 85% of the 4,4'-bipyridinium salt was synthesized as propionic acid derivative and used to both stabilize the QDs in water and label basic amino acids and different biomarkers utilizing the carboxylic acid functional group. Fifteen percent of the 4,4'-bipyridinium salt was synthesized as N-propyl maleimide and used as a second ligand to label any protein containing the amino acid cysteine by means of a 1,4-Michael addition.


Assuntos
Técnicas de Química Sintética/métodos , Piridinas/química , Pontos Quânticos , Água/química , Compostos de Cádmio/síntese química , Compostos de Cádmio/química , Ligantes , Compostos de Selênio/síntese química , Compostos de Selênio/química , Solventes/química , Telúrio/química , Fatores de Tempo
15.
Nano Lett ; 8(4): 1229-36, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18318505

RESUMO

In this study, the interactions of two gold nanoparticles of different sizes (average diameters of 3.7 +/- 2.6 and 17 +/- 3 nm) with octameric mycobacterial porin A from Mycobacterium smegmatis (MspA) and a mutant of MspA featuring a cysteine mutation in position 126 (Q126C) are investigated. From the observation of enhanced photoluminescence quenching, it is inferred that the presence of eight cysteines in the MspA Q126C mutant significantly enhances the binding of selected small gold nanoparticles within the inner pore of MspA. The large gold nanoparticle/porin complex shows photoluminescence enhancement, which is expected since the larger nanoparticles cannot dock within the homopore of MspA due to size exclusion. In addition to the fluorescence experiments, observation of energy transfer from the small gold nanoparticles to the MspA shows the close proximity of the small gold nanoparticles with the porin. Interestingly, the energy transfer of the large nanoparticle/MspA complex is completely missing. From high-performance liquid chromatography data, the estimated binding constants for small Au@MspA, large Au@MspA, small Au@MspAcys, and large Au@MspAcys are 1.3 x 10 (9), 2.22 x 10 (10), > 10 (12) (irreversible), and 1.7 x 10 (10), respectively.


Assuntos
Cisteína/genética , Ouro/química , Nanopartículas Metálicas , Mutação , Porinas/química , Cromatografia Líquida de Alta Pressão , Microscopia Eletrônica de Transmissão , Análise de Ativação de Nêutrons , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA