Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(2): 243-250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37945897

RESUMO

The anthraquinone-fused enediynes (AFEs) combine an anthraquinone moiety and a ten-membered enediyne core capable of generating a cytotoxic diradical species. AFE cyclization is triggered by opening the F-ring epoxide, which is also the site of the most structural diversity. Previous studies of tiancimycin A, a heavily modified AFE, have revealed a cryptic aldehyde blocking installation of the epoxide, and no unassigned oxidases could be predicted within the tnm biosynthetic gene cluster. Here we identify two consecutively acting cofactorless oxygenases derived from methyltransferase and α/ß-hydrolase protein folds, TnmJ and TnmK2, respectively, that are responsible for F-ring tailoring in tiancimycin biosynthesis by comparative genomics. Further biochemical and structural characterizations reveal that the electron-rich AFE anthraquinone moiety assists in catalyzing deformylation, epoxidation and oxidative ring cleavage without exogenous cofactors. These enzymes therefore fill important knowledge gaps for the biosynthesis of this class of molecules and the underappreciated family of cofactorless oxygenases.


Assuntos
Antineoplásicos , Oxigenases , Antraquinonas/química , Antraquinonas/metabolismo , Enedi-Inos/química , Enedi-Inos/metabolismo , Compostos de Epóxi
2.
Proc Natl Acad Sci U S A ; 120(9): e2220468120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802426

RESUMO

The enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product. However, the identity of the PKSE product that is converted to the enediyne core or anthraquinone moiety has not been established. Here, we report the utilization of recombinant E. coli coexpressing various combinations of genes that encode a PKSE and a thioesterase (TE) from either 9- or 10-membered enediyne biosynthetic gene clusters to chemically complement ΔPKSE mutant strains of the producers of dynemicins and tiancimycins. Additionally, 13C-labeling experiments were performed to track the fate of the PKSE/TE product in the ΔPKSE mutants. These studies reveal that 1,3,5,7,9,11,13-pentadecaheptaene is the nascent, discrete product of the PKSE/TE that is converted to the enediyne core. Furthermore, a second molecule of 1,3,5,7,9,11,13-pentadecaheptaene is demonstrated to serve as the precursor of the anthraquinone moiety. The results establish a unified biosynthetic paradigm for AFEs, solidify an unprecedented biosynthetic logic for aromatic polyketides, and have implications for the biosynthesis of not only AFEs but all enediynes.


Assuntos
Produtos Biológicos , Escherichia coli , Escherichia coli/genética , Antraquinonas/química , Policetídeo Sintases/genética , Policetídeo Sintases/química , Enedi-Inos/química , Antibióticos Antineoplásicos
3.
J Am Chem Soc ; 144(44): 20452-20462, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36279548

RESUMO

First discovered in 1989, the anthraquinone-fused enediynes are a class of DNA-cleaving bacterial natural products composed of a DNA-intercalating anthraquinone moiety and a 10-membered enediyne warhead. However, until recently, there has been a lack of genetically amenable hosts and sequenced biosynthetic gene clusters available for solving the biosynthetic questions surrounding these molecules. Herein, we have identified and biochemically and structurally characterized TnmK1, a member of the α/ß-hydrolase fold superfamily responsible for the C-C bond formation linking the anthraquinone moiety and enediyne core together in tiancimycin (TNM) biosynthesis. In doing so, two intermediates, TNM H and TNM I, in anthraquinone-fused enediyne biosynthesis, containing an unprecedented cryptic C16 aldehyde group, were identified. This aldehyde plays a key role in the TnmK1-catalyzed C-C bond formation via a Michael addition, representing the first example of this chemistry for the α/ß-hydrolase fold superfamily. Additionally, TNM I shows sub-nanomolar cytotoxicity against selected cancer cell lines, indicating a new mechanism of action compared to previously known anthraquinone-fused enediynes. Together, the findings from this study are expected to impact enzymology, natural product biosynthesis, and future efforts at enediyne discovery and drug development.


Assuntos
Produtos Biológicos , Enedi-Inos , Enedi-Inos/química , Antraquinonas/química , Produtos Biológicos/química , Hidrolases , Aldeídos
4.
Nat Commun ; 12(1): 5672, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584078

RESUMO

Nature forms S-S bonds by oxidizing two sulfhydryl groups, and no enzyme installing an intact hydropersulfide (-SSH) group into a natural product has been identified to date. The leinamycin (LNM) family of natural products features intact S-S bonds, and previously we reported an SH domain (LnmJ-SH) within the LNM hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line as a cysteine lyase that plays a role in sulfur incorporation. Here we report the characterization of an S-adenosyl methionine (SAM)-dependent hydropersulfide methyltransferase (GnmP) for guangnanmycin (GNM) biosynthesis, discovery of hydropersulfides as the nascent products of the GNM and LNM hybrid NRPS-PKS assembly lines, and revelation of three SH domains (GnmT-SH, LnmJ-SH, and WsmR-SH) within the GNM, LNM, and weishanmycin (WSM) hybrid NRPS-PKS assembly lines as thiocysteine lyases. Based on these findings, we propose a biosynthetic model for the LNM family of natural products, featuring thiocysteine lyases as PKS domains that directly install a -SSH group into the GNM, LNM, or WSM polyketide scaffold. Genome mining reveals that SH domains are widespread in Nature, extending beyond the LNM family of natural products. The SH domains could also be leveraged as biocatalysts to install an -SSH group into other biologically relevant scaffolds.


Assuntos
Produtos Biológicos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Cisteína/análogos & derivados , Metiltransferases/metabolismo , Policetídeo Sintases/metabolismo , Sulfetos/metabolismo , Animais , Produtos Biológicos/química , Cisteína/metabolismo , Cistina/química , Cistina/metabolismo , Humanos , Lactamas/síntese química , Lactamas/química , Lactamas/metabolismo , Macrolídeos/síntese química , Macrolídeos/química , Macrolídeos/metabolismo , Modelos Químicos , Estrutura Molecular , Peptídeo Sintases/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Especificidade por Substrato , Sulfetos/química , Tiazóis/síntese química , Tiazóis/química , Tiazóis/metabolismo , Tionas/síntese química , Tionas/química , Tionas/metabolismo , Domínios de Homologia de src
5.
ACS Synth Biol ; 8(6): 1391-1400, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31134799

RESUMO

The scaffolds of polyketides are constructed via assembly of extender units based on malonyl-CoA and its derivatives that are substituted at the C2-position with diverse chemical functionality. Subsequently, a transcription-factor-based biosensor for malonyl-CoA has proven to be a powerful tool for detecting malonyl-CoA, facilitating the dynamic regulation of malonyl-CoA biosynthesis and guiding high-throughput engineering of malonyl-CoA-dependent processes. Yet, a biosensor for the detection of malonyl-CoA derivatives has yet to be reported, severely restricting the application of high-throughput synthetic biology approaches to engineering extender unit biosynthesis and limiting the ability to dynamically regulate the biosynthesis of polyketide products that are dependent on such α-carboxyacyl-CoAs. Herein, the FapR biosensor was re-engineered and optimized for a range of mCoA concentrations across a panel of E. coli strains. The effector specificity of FapR was probed by cell-free transcription-translation, revealing that a variety of non-native and non-natural acyl-thioesters are FapR effectors. This FapR promiscuity proved sufficient for the detection of the polyketide extender unit methylmalonyl-CoA in E. coli, providing the first reported genetically encoded biosensor for this important metabolite. As such, the previously unknown broad effector promiscuity of FapR provides a platform to develop new tools and approaches that can be leveraged to overcome limitations of pathways that construct diverse α-carboxyacyl-CoAs and those that are dependent on them, including biofuels, antibiotics, anticancer drugs, and other value-added products.


Assuntos
Técnicas Biossensoriais/métodos , Malonil Coenzima A/análise , Policetídeo Sintases/metabolismo , Engenharia de Proteínas/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Malonil Coenzima A/metabolismo , Redes e Vias Metabólicas , Policetídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Biologia Sintética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
6.
Tissue Eng Part B Rev ; 15(1): 87-90, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19260807

RESUMO

U.S. patents directed to stem cell technologies have generated a high degree of interest and controversy. Many patents relating to stem cell technology have faced reexamination, litigation, or both. The U.S. Patent and Trademark Office (USPTO) recently upheld three Wisconsin Alumni Research Foundation (WARF) stem cell patents after reexamination requested by a third-party challenger in 2006. StemCells, Inc., and Neuralstem, Inc., both filed suits with respect to their patents related to neural stem cells. StemCells filed a suit on July 24, 2006, alleging infringement of its patents collectively referred to as "the neural stem cell patents," by Neuralstem, Inc. Neuralstem, Inc., filed a suit against StemCells, Inc., on May 7, 2008, alleging inequitable conduct during prosecution of StemCells' U.S. Patent No. 7,361,505. Both suits are yet to be decided. Pharmastem Therapeutics, Inc., had attempted to enforce its U.S. Patent Nos. 5,192,553 and 5,004,681, which resulted in invalidation of the patents in 2007. It remains to be seen what effect (if any) the recent increases in funding of stem research and the important U.S. Supreme Court decision on KSR v. Teleflex, Inc. (making it more difficult to establish nonobviousness of patentable subject matter) will have on challenges to stem cell patents.


Assuntos
Patentes como Assunto/legislação & jurisprudência , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Células-Tronco Embrionárias/citologia , Humanos , Apoio à Pesquisa como Assunto , Transplante de Células-Tronco/legislação & jurisprudência , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA