Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (106): e53459, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26779586

RESUMO

A major parameter determining the success of a bone-grafting procedure is vascularization of the area surrounding the graft. We hypothesized that implantation of a bone autograft would induce greater bone regeneration by abundant blood vessel formation. To investigate the effect of the graft on neovascularization at the defect site, we developed a micro-computed tomography (µCT) approach to characterize newly forming blood vessels, which involves systemic perfusion of the animal with a polymerizing contrast agent. This method enables detailed vascular analysis of an organ in its entirety. Additionally, blood perfusion was assessed using fluorescence imaging (FLI) of a blood-borne fluorescent agent. Bone formation was quantified by FLI using a hydroxyapatite-targeted probe and µCT analysis. Stem cell recruitment was monitored by bioluminescence imaging (BLI) of transgenic mice that express luciferase under the control of the osteocalcin promoter. Here we describe and demonstrate preparation of the allograft, calvarial defect surgery, µCT scanning protocols for the neovascularization study and bone formation analysis (including the in vivo perfusion of contrast agent), and the protocol for data analysis. The 3D high-resolution analysis of vasculature demonstrated significantly greater angiogenesis in animals with implanted autografts, especially with respect to arteriole formation. Accordingly, blood perfusion was significantly higher in the autograft group by the 7(th) day after surgery. We observed superior bone mineralization and measured greater bone formation in animals that received autografts. Autograft implantation induced resident stem cell recruitment to the graft-host bone suture, where the cells differentiated into bone-forming cells between the 7(th) and 10(th) postoperative day. This finding means that enhanced bone formation may be attributed to the augmented vascular feeding that characterizes autograft implantation. The methods depicted may serve as an optimal tool to study bone regeneration in terms of tightly bounded bone formation and neovascularization.


Assuntos
Aloenxertos/anatomia & histologia , Regeneração Óssea/fisiologia , Transplante Ósseo/métodos , Osso e Ossos/irrigação sanguínea , Crânio/transplante , Aloenxertos/irrigação sanguínea , Aloenxertos/diagnóstico por imagem , Animais , Autoenxertos/irrigação sanguínea , Autoenxertos/diagnóstico por imagem , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Diferenciação Celular , Feminino , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/fisiologia , Imagem Óptica/métodos , Osteogênese/efeitos dos fármacos , Crânio/anatomia & histologia , Crânio/irrigação sanguínea , Crânio/diagnóstico por imagem , Microtomografia por Raio-X/métodos
2.
Mol Pharm ; 10(12): 4462-71, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24131143

RESUMO

Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones. Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and microcomputed tomography (µCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes. Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The µCT scans revealed a significant increase in bone formation in allograft + PTH treated mice comparing to allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the allograft + PTH treated animals. In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Hormônio Paratireóideo/farmacologia , Aloenxertos/efeitos dos fármacos , Aloenxertos/fisiologia , Animais , Transplante Ósseo/métodos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Expressão Gênica/fisiologia , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Osteocalcina/genética , Osteogênese/genética , Regiões Promotoras Genéticas/genética , Sialoglicoproteínas/genética , Transplante Homólogo/métodos
3.
Tissue Eng Part A ; 19(5-6): 748-58, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23215901

RESUMO

Osteogenesis of mesenchymal stem cells (MSCs) is highly dependent on oxygen supply. We have shown that perfluorotributylamine (PFTBA), a synthetic oxygen carrier, enhances MSC-based bone formation in vivo. Exploring this phenomenon's mechanism, we hypothesize that a transient increase in oxygen levels using PFTBA will affect MSC survival, proliferation, and differentiation, thus increasing bone formation. To test this hypothesis, MSCs overexpressing bone morphogenetic protein 2 were encapsulated in alginate beads that had been supplemented with an emulsion of PFTBA or phosphate-buffered saline. Oxygen measurements showed that supplementation of PFTBA significantly increased the available oxygen level during a 96-h period. PFTBA-containing beads displayed an elevation in cell viability, which was preserved throughout 2 weeks, and a significantly lower ratio of dead cells throughout the experiment. Furthermore, the cells from the control group expressed significantly more hypoxia-related genes such as VEGF, DDIT3, and PKG1. Additionally, PFTBA supplementation led to an increase in the osteogenic differentiation and to a decrease in chondrogenic differentiation of MSCs. In conclusion, PFTBA increases the oxygen availability in the vicinity of the MSCs, which suffer oxygen exhaustion shortly after encapsulation in alginate beads. Consequently, cell survival is increased, and hypoxia-related genes are downregulated. In addition, PFTBA promotes osteogenic differentiation over chondrogeneic differentiation, and thereby can accelerate MSC-based bone regeneration.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Osteogênese , Oxigênio/farmacologia , Animais , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Fluorocarbonos/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese/efeitos dos fármacos , Tela Subcutânea/efeitos dos fármacos
4.
J Struct Biol ; 177(2): 314-28, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22248452

RESUMO

This study investigates the three-dimensional structure of the eight plate exoskeletal (shell) assembly of the chiton Tonicella marmorea. X-ray micro-computed tomography and 3D printing elucidate the mechanism of conformational change from a passive (slightly curved, attached to surface) to a defensive (rolled, detached from surface) state of the plate assembly. The passive and defensive conformations exhibited differences in longitudinal curvature index (0.43 vs. 0.70), average plate-to-plate overlap (∼62% vs. ∼48%), cross-sectional overlap heterogeneity (60-82.5% vs. 0-90%, fourth plate), and plate-to-plate separation distance (100% increase in normalized separation distance between plates 4 and 5), respectively. The plate-to-plate interconnections consist of two rigid plates joined by a compliant, actuating muscle, analogous to a geometrically structured shear lap joint. This work provides an understanding of how T. marmorea achieves the balance between mobility and protection. In the passive state, the morphometry of the plates and plate-to-plate interconnections results in an approximately continuous curvature and constant armor thickness, resulting in limited mobility but maximum protection. In the defensive state, the underlying soft tissues gain protection and the chiton gains mobility through tidal flow, but regions of vulnerability open dorsally, due to the increase in plate-to-plate separation and decrease in plate-to-plate overlap. Lastly, experiments using optical and scanning electron microscopy, mercury porosimetry, and Fourier-transform infrared spectroscopy explore the microstructure and spatial distribution of the six layers within the intermediate plates, the role of multilayering in resisting predatory attacks, and the detection of chitin as a major component of the intra-plate organic matrix and girdle.


Assuntos
Exoesqueleto/anatomia & histologia , Poliplacóforos/anatomia & histologia , Exoesqueleto/metabolismo , Animais , Fenômenos Biomecânicos , Carbonato de Cálcio/metabolismo , Modelos Anatômicos , Modelos Biológicos , Poliplacóforos/metabolismo , Microtomografia por Raio-X
5.
Mol Pharm ; 8(5): 1592-601, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21834548

RESUMO

Vertebral compression fractures (VCFs), the most common fragility fractures, account for approximately 700,000 injuries per year. Since open surgery involves morbidity and implant failure in the osteoporotic patient population, a new minimally invasive biological solution to vertebral bone repair is needed. Previously, we showed that adipose-derived stem cells (ASCs) overexpressing a BMP gene are capable of inducing spinal fusion in vivo. We hypothesized that a direct injection of ASCs, designed to transiently overexpress rhBMP6, into a vertebral bone void defect would accelerate bone regeneration. Porcine ASCs were isolated and labeled with lentiviral vectors that encode for the reporter gene luciferase (Luc) under constitutive (ubiquitin) or inductive (osteocalcin) promoters. The ASCs were first labeled with reporter genes and then nucleofected with an rhBMP6-encoding plasmid. Twenty-four hours later, bone void defects were created in the coccygeal vertebrae of nude rats. The ASC-BMP6 cells were suspended in fibrin gel (FG) and injected into the bone void. A control group was injected with FG alone. The regenerative process was monitored in vivo using microCT, and cell survival and differentiation were monitored using tissue specific reporter genes and bioluminescence imaging (BLI). The surgically treated vertebrae were harvested after 12 weeks and subjected to histological and immunohistochemical (against porcine vimentin) analyses. In vivo BLI detected Luc-expressing cells at the implantation site over a 12-week period. Beginning 2 weeks postoperatively, considerable defect repair was observed in the group treated with ASC-BMP6 cells. The rate of bone formation in the stem cell-treated group was two times faster than that in the FG-treated group, and bone volume at the end point was 2-fold compared to the control group. Twelve weeks after cell injection the bone volume within the void reached the volume measured in native vertebrae. Immunostaining against porcine vimentin indicated that the ASC-BMP6 cells contributed to new bone formation. Here we show the potential of injections of BMP-modified ASCs to repair vertebral bone defects in a rat model. Our results could pave the way to a novel approach for the biological treatment of traumatic and osteoporosis-related vertebral bone injuries.


Assuntos
Células-Tronco Adultas/transplante , Proteína Morfogenética Óssea 6/uso terapêutico , Regeneração Óssea , Técnicas de Transferência de Genes , Traumatismos da Coluna Vertebral/terapia , Coluna Vertebral/fisiologia , Células-Tronco Adultas/metabolismo , Animais , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Células Cultivadas , Fibrina/química , Genes Reporter , Hidrogel de Polietilenoglicol-Dimetacrilato , Osteocalcina/genética , Regiões Promotoras Genéticas , Radiografia , Distribuição Aleatória , Ratos , Ratos Nus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Traumatismos da Coluna Vertebral/diagnóstico por imagem , Traumatismos da Coluna Vertebral/metabolismo , Traumatismos da Coluna Vertebral/patologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia , Gordura Subcutânea Abdominal/citologia , Suínos , Porco Miniatura , Cauda , Ubiquitina/genética
6.
J Tissue Eng Regen Med ; 5(5): 384-93, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20740691

RESUMO

Mechanical loading has been described as a highly important stimulus for improvements in the quality and strength of bone. It has also been shown that mechanical stimuli can induce the differentiation of mesenchymal stem cells (MSCs) along the osteogenic lineage. We have previously demonstrated the potent osteogenic effect of MSCs engineered to overexpress the BMP2 gene. In this study we investigated the effect of mechanical loading on BMP2-expressing MSC-like cells, using a special bioreactor designed to apply dynamic forces on cell-seeded hydrogels. Cell viability, alkaline phosphatase (ALP) activity, BMP2 secretion and mineralized substance formation in the hydrogels were quantified. We found that cell metabolism increased as high as 6.8-fold, ALP activity by 12.5-fold, BMP2 secretion by 182-fold and mineralized tissue formation by 1.72-fold in hydrogels containing MSC-like cells expressing BMP2, which were cultured in the presence of mechanical loading. We have shown that ex vivo mechanical loading had an additive effect on BMP2-induced osteogenesis in genetically engineered MSC-like cells. These data could be valuable for bone tissue-engineering strategies of the future.


Assuntos
Engenharia Genética/métodos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Fosfatase Alcalina/metabolismo , Animais , Reatores Biológicos , Proteína Morfogenética Óssea 2/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular , Fibrinogênio/química , Hidrogéis , Camundongos , Camundongos Endogâmicos C3H , Osteogênese , Polietilenoglicóis/química
7.
Tissue Eng Part A ; 16(12): 3679-86, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20618082

RESUMO

Most spine fusion procedures involve the use of prosthetic fixation devices combined with autologous bone grafts rather than biological treatment. We had shown that spine fusion could be achieved by injection of bone morphogenetic protein-2 (BMP-2)-expressing mesenchymal stem cells (MSCs) into the paraspinal muscle. In this study, we hypothesized that posterior spinal fusion achieved using genetically modified MSCs would be mechanically comparable to that realized using a mechanical fixation. BMP-2-expressing MSCs were injected bilaterally into paravertebral muscles of the mouse lumbar spine. In one control group BMP-2 expression was inhibited. Microcomputed tomography and histological analyses were used to evaluate bone formation. For comparison, a group of mouse spines were bilaterally fused with stainless steel pins. The harvested spines were later tested using a custom four-point bending apparatus and structural bending stiffness was estimated. To assess the degree to which MSC vertebral fusion was targeted and to quantify the effects of fusion on adjacent spinal segments, images of the loaded spine curvature were analyzed to extract rigidity of the individual spinal segments. Bone bridging of the targeted vertebrae was observed in the BMP-2-expressing MSC group, whereas no bone formation was noted in any control group. The biomechanical tests showed that MSC-mediated spinal fusion was as effective as stainless steel pin-based fusion and significantly more rigid than the control groups. Local analysis showed that the distribution of stiffness in the MSC-based fusion group was similar to that in the steel pin fusion group, with the majority of spinal stiffness contributed by the targeted fusion at L3-L5. Our findings demonstrate that MSC-induced spinal fusion can convey biomechanical rigidity to a targeted segment that is comparable to that achieved using an instrumental fixation.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fusão Vertebral , Animais , Fenômenos Biomecânicos , Linhagem Celular , Feminino , Imuno-Histoquímica , Células-Tronco Mesenquimais/fisiologia , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Coluna Vertebral/citologia , Coluna Vertebral/cirurgia , Microtomografia por Raio-X
8.
J Biomech ; 43(12): 2315-20, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20471652

RESUMO

Stem cell-mediated gene therapy for fracture repair, utilizes genetically engineered mesenchymal stem cells (MSCs) for the induction of bone growth and is considered a promising approach in skeletal tissue regeneration. Previous studies have shown that murine nonunion fractures can be repaired by implanting MSCs over-expressing recombinant human bone morphogenetic protein-2 (rhBMP-2). Nanoindentation studies of bone tissue induced by MSCs in a radius fracture site indicated similar elastic modulus compared to intact murine bone, eight weeks post-treatment. In the present study we sought to investigate temporal changes in microarchitecture and biomechanical properties of repaired murine radius bones, following the implantation of MSCs. High-resolution micro-computed tomography (micro-CT) was performed 10 and 35 weeks post MSC implantation, followed by micro-finite element (micro-FE) analysis. The results have shown that the regenerated bone tissue remodels over time, as indicated by a significant decrease in bone volume, total volume, and connectivity density combined with an increase in mineral density. In addition, the axial stiffness of limbs repaired with MSCs was 2-1.5 times higher compared to the contralateral intact limbs, at 10 and 35 weeks post-treatment. These results could be attributed to the fusion that occurred in between the ulna and radius bones. In conclusion, although MSCs induce bone formation, which exceeds the fracture site, significant remodeling of the repair callus occurs over time. In addition, limbs treated with an MSC graft demonstrated superior biomechanical properties, which could indicate the clinical benefit of future MSC application in nonunion fracture repair.


Assuntos
Fraturas não Consolidadas/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais , Animais , Fenômenos Biomecânicos , Densidade Óssea , Proteína Morfogenética Óssea 2/genética , Regeneração Óssea , Remodelação Óssea , Modelos Animais de Doenças , Módulo de Elasticidade , Feminino , Análise de Elementos Finitos , Fraturas não Consolidadas/diagnóstico por imagem , Fraturas não Consolidadas/fisiopatologia , Engenharia Genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Fraturas do Rádio/diagnóstico por imagem , Fraturas do Rádio/fisiopatologia , Fraturas do Rádio/terapia , Proteínas Recombinantes/genética , Microtomografia por Raio-X
9.
Biomaterials ; 30(27): 4639-48, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19540585

RESUMO

A major hurdle to surmount in bone-tissue engineering is ensuring a sufficient oxygen supply to newly forming tissue to avoid cell death or delayed development of osteogenic features. We hypothesized that an oxygen-enriched hydrogel scaffold would enhance tissue-engineered bone formation in vivo. To test this, we used a well-characterized mesenchymal stem cell (MSC) line, Tet-off BMP2 MSC, whose cells were engineered to express recombinant human bone morphogenetic protein-2. Cells were suspended in hydrogel supplemented with perfluorotributylamine (PFTBA) and implanted subcutaneously in an ectopic site, a radial bone defect, or a lumbar paravertebral muscle (mouse model of spinal fusion) in C3H/HeN mice. For controls, we used cells suspended in the same gel without PFTBA. In the ectopic site, there were significant increases in bone formation (2.5-fold increase), cell survival, and osteocalcin activity in the PFTBA-supplemented groups. PFTBA supplementation significantly increased structural parameters of bone in radial bone defects and triggered a significant 1.4-fold increase in bone volume in the spinal fusion model. We conclude that synthetic oxygen carrier supplementation of tissue-engineered implants enhances ectopic bone formation and yields better bone quality and volume in bone-repair and spinal fusion models, probably due to increased cell survival.


Assuntos
Fluorocarbonos/farmacologia , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Oxigênio/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Implantes Experimentais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Osteocalcina/genética , Osteocalcina/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Rádio (Anatomia)/efeitos dos fármacos , Rádio (Anatomia)/patologia , Fusão Vertebral , Tetraciclina/farmacologia , Cicatrização/efeitos dos fármacos
10.
Tissue Eng Part A ; 14(10): 1709-20, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18620480

RESUMO

Genetically modified mesenchymal stem cells (MSCs), overexpressing a BMP gene, have been previously shown to be potent inducers of bone regeneration. However, little was known of the chemical and intrinsic nanomechanical properties of this engineered bone. A previous study utilizing microcomputed tomography, back-scattered electron microscopy, energy-dispersive X-ray, nanoindentation, and atomic force microscopy showed that engineered ectopic bone, although similar in chemical composition and topography, demonstrated an elastic modulus range (14.6-22.1 GPa) that was less than that of the native bone (16.6-38.5 GPa). We hypothesized that these results were obtained due to the specific conditions that exist in an intramuscular ectopic implantation site. Here, we implanted MSCs overexpressing BMP-2 gene in an orthotopic site, a nonunion radial bone defect, in mice. The regenerated bone tissue was analyzed using the same methods previously utilized. The samples revealed high similarity between the engineered and native radii in chemical structure and elemental composition. In contrast to the previous study, nanoindentation data showed that, in general, the native bone exhibited a statistically similar elastic modulus values compared to that of the engineered bone, while the hardness was found to be marginally statistically different at 1000 muN and statistically similar at 7000 muN. We hypothesize that external loading, osteogenic cytokines and osteoprogenitors that exist in a fracture site could enhance the maturation of engineered bone derived from BMP-modified MSCs. Further studies should determine whether longer duration periods postimplantation would lead to increased bone adaptation.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/fisiopatologia , Células-Tronco Mesenquimais/citologia , Animais , Fenômenos Biomecânicos , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Osso e Ossos/cirurgia , Linhagem Celular , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Análise Espectral Raman , Engenharia Tecidual/métodos , Tomógrafos Computadorizados
11.
Tissue Eng Part A ; 14(11): 1763-73, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18636943

RESUMO

Stem cell-based bone tissue regeneration in the maxillofacial complex is a clinical necessity. Genetic engineering of mesenchymal stem cells (MSCs) to follow specific differentiation pathways may enhance the ability of these cells to regenerate and increase their clinical relevance. MSCs isolated from maxillofacial bone marrow (BM) are good candidates for tissue regeneration at sites of damage to the maxillofacial complex. In this study, we hypothesized that MSCs isolated from the maxillofacial complex can be engineered to overexpress the bone morphogenetic protein-2 gene and induce bone tissue regeneration in vivo. To demonstrate that the cells isolated from the maxillofacial complex were indeed MSCs, we performed a flow cytometry analysis, which revealed a high expression of mesenchyme-related markers and an absence of non-mesenchyme-related markers. In vitro, the MSCs were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages. Gene delivery of the osteogenic gene BMP2 via an adenoviral vector revealed high expression levels of BMP2 protein that induced osteogenic differentiation of these cells in vitro and induced bone formation in an ectopic site in vivo. In addition, implantation of genetically engineered maxillofacial BM-derived MSCs into a mandibular defect led to regeneration of tissue at the site of the defect; this was confirmed by performing micro-computed tomography analysis. Histological analysis of the mandibles revealed osteogenic differentiation of implanted cells as well as bone tissue regeneration. We conclude that maxillofacial BM-derived MSCs can be genetically engineered to induce bone tissue regeneration in the maxillofacial complex and that this finding may be clinically relevant.


Assuntos
Regeneração Óssea/fisiologia , Doenças Mandibulares/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Ossos Faciais/citologia , Feminino , Humanos , Lactente , Masculino , Doenças Mandibulares/fisiopatologia , Maxila/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Adulto Jovem
12.
J Orthop Res ; 26(4): 522-30, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17985393

RESUMO

Fluorescence molecular tomography (FMT) is a novel tomographic near-infrared (NIR) imaging modality that enables 3D quantitative determination of fluorochrome distribution in tissues of live small animals at any depth. This study demonstrates a noninvasive, quantitative method of monitoring engineered bone remodeling via FMT. Murine mesenchymal stem cells overexpressing the osteogenic gene BMP2 (mMSCs-BMP2) were implanted into the thigh muscle and into a radial nonunion bone defect model in C3H/HeN mice. Real-time imaging of bone formation was performed following systemic administration of the fluorescent bisphosphonate imaging agent OsteoSense, an hydroxyapatite-directed bone-imaging probe. The mice underwent imaging on days 7, 14, and 21 postimplantation. New bone formation at the implantation sites was quantified using micro-computed tomography (micro-CT) imaging. A higher fluorescent signal occurred at the site of the mMSC-BMP2 implants than that found in controls. Micro-CT imaging revealed a mass of mature bone formed in the implantation sites on day 21, a finding also confirmed by histology. These findings highlight the effectiveness of FMT as a functional platform for molecular imaging in the field of bone regeneration and tissue engineering.


Assuntos
Consolidação da Fratura/fisiologia , Fraturas não Consolidadas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Fraturas do Rádio/terapia , Animais , Feminino , Corantes Fluorescentes , Fraturas não Consolidadas/diagnóstico por imagem , Fraturas não Consolidadas/patologia , Engenharia Genética , Camundongos , Camundongos Endogâmicos C3H , Fraturas do Rádio/diagnóstico por imagem , Fraturas do Rádio/patologia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA