Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522486

RESUMO

Sequencing of cancer genomes has identified recurrent somatic mutations in histones, termed oncohistones, which are frequently poorly understood. Previously we showed that fission yeast expressing only the H3.3G34R mutant identified in aggressive pediatric glioma had reduced H3K36 trimethylation and acetylation, increased genomic instability and replicative stress, and defective homology-dependent DNA damage repair. Here we show that surprisingly distinct phenotypes result from G34V (also in glioma) and G34W (giant cell tumors of bone) mutations, differentially affecting H3K36 modifications, subtelomeric silencing, genomic stability; sensitivity to irradiation, alkylating agents, and hydroxyurea; and influencing DNA repair. In cancer, only 1 of 30 alleles encoding H3 is mutated. Whilst co-expression of wild-type H3 rescues most G34 mutant phenotypes, G34R causes dominant hydroxyurea sensitivity, homologous recombination defects, and dominant subtelomeric silencing. Together, these studies demonstrate the complexity associated with different substitutions at even a single residue in H3 and highlight the utility of genetically tractable systems for their analysis.


Assuntos
Histonas/metabolismo , Recombinação Homóloga , Proteínas Mutantes/metabolismo , Schizosaccharomyces/metabolismo , Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Histonas/genética , Proteínas Mutantes/genética , Schizosaccharomyces/genética
2.
Chromosoma ; 124(2): 177-89, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25773741

RESUMO

Brain tumors are the most common solid tumors in children. Pediatric high-grade glioma (HGG) accounts for ∼8-12 % of these brain tumors and is a devastating disease as 70-90 % of patients die within 2 years of diagnosis. The failure to advance therapy for these children over the last 30 years is largely due to limited knowledge of the molecular basis for these tumors and a lack of disease models. Recently, sequencing of tumor cells revealed that histone H3 is frequently mutated in pediatric HGG, with up to 78 % of diffuse intrinsic pontine gliomas (DIPGs) carrying K27M and 36 % of non-brainstem gliomas carrying either K27M or G34R/V mutations. Although mutations in many chromatin modifiers have been identified in cancer, this was the first demonstration that histone mutations may be drivers of disease. Subsequent studies have identified high-frequency mutation of histone H3 to K36M in chondroblastomas and to G34W/L in giant cell tumors of bone, which are diseases of adolescents and young adults. Interestingly, the G34 mutations, the K36M mutations, and the majority of K27M mutations occur in genes encoding the replacement histone H3.3. Here, we review the peculiar characteristics of histone H3.3 and use this information as a backdrop to highlight current thinking about how the identified mutations may contribute to disease development.


Assuntos
Neoplasias do Tronco Encefálico/genética , Carcinogênese/genética , Glioma/genética , Histonas/genética , Mutação , Sequência de Aminoácidos , Animais , Neoplasias do Tronco Encefálico/diagnóstico , Criança , Glioma/diagnóstico , Humanos , Dados de Sequência Molecular , Nucleossomos/genética , Nucleossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA