Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Signal ; 16(804): eabl8266, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37751479

RESUMO

Virus-host interactions can reveal potentially effective and selective therapeutic targets for treating infection. Here, we performed an integrated analysis of the dynamics of virus replication and the host cell transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using human Caco-2 colon cancer cells as a model. Time-resolved RNA sequencing revealed that, upon infection, cells immediately transcriptionally activated genes associated with inflammatory pathways that mediate the antiviral response, which was followed by an increase in the expression of genes involved in ribosome and mitochondria function, thus suggesting rapid alterations in protein production and cellular energy supply. At later stages, between 24 and 48 hours after infection, the expression of genes involved in metabolic processes-in particular, those related to xenobiotic metabolism-was decreased. Mathematical modeling incorporating SARS-CoV-2 replication suggested that SARS-CoV-2 proteins inhibited the host antiviral response and that virus transcripts exceeded the translation capacity of the host cells. Targeting kinase-dependent pathways that exhibited increases in transcription in host cells was as effective as a virus-targeted inhibitor at repressing viral replication. Our findings in this model system delineate a sequence of SARS-CoV-2 virus-host interactions that may facilitate the identification of druggable host pathways to suppress infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Células CACO-2 , SARS-CoV-2/genética , Transcriptoma , COVID-19/genética , Células Epiteliais , Antivirais
3.
Nat Cancer ; 3(9): 1039-1051, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715501

RESUMO

Patients with cancer frequently receive immune-checkpoint inhibitors (ICIs), which may modulate immune responses to COVID-19 vaccines. Recently, cytokine release syndrome (CRS) was observed in a patient with cancer who received BTN162b2 vaccination under ICI treatment. Here, we analyzed adverse events and serum cytokines in patients with 23 different tumors undergoing (n = 64) or not undergoing (n = 26) COVID-19 vaccination under ICI therapy in a prospectively planned German single-center cohort study (n = 220). We did not observe clinically relevant CRS (≥grade 2) after vaccination (95% CI 0-5.6%; Common Terminology of Adverse Events v.5.0) in this small cohort. Within 4 weeks after vaccination, serious adverse events occurred in eight patients (12.5% 95% CI 5.6-23%): six patients were hospitalized due to events common under cancer therapy including immune related adverse events and two patients died due to conditions present before vaccination. Despite absence of CRS symptoms, a set of pairwise-correlated CRS-associated cytokines, including CXCL8 and interleukin-6 was >1.5-fold upregulated in 40% (95% CI 23.9-57.9%) of patients after vaccination. Hence, elevated cytokine levels are common and not sufficient to establish CRS diagnosis.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Neoplasias , Vacinas contra COVID-19/efeitos adversos , Estudos de Coortes , Síndrome da Liberação de Citocina , Citocinas , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia/efeitos adversos , Interleucina-6 , Neoplasias/tratamento farmacológico , Vacinação
4.
Sci Adv ; 6(6): eaay0187, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076642

RESUMO

The limited target specificity of CRISPR-Cas nucleases poses a challenge with respect to their application in research and therapy. Here, we present a simple and original strategy to enhance the specificity of CRISPR-Cas9 genome editing by coupling Cas9 to artificial inhibitory domains. Applying a combination of mathematical modeling and experiments, we first determined how CRISPR-Cas9 activity profiles relate to Cas9 specificity. We then used artificially weakened anti-CRISPR (Acr) proteins either coexpressed with or directly fused to Cas9 to fine-tune its activity toward selected levels, thereby achieving an effective kinetic insulation of ON- and OFF-target editing events. We demonstrate highly specific genome editing in mammalian cells using diverse single-guide RNAs prone to potent OFF-targeting. Last, we show that our strategy is compatible with different modes of delivery, including transient transfection and adeno-associated viral vectors. Together, we provide a highly versatile approach to reduce CRISPR-Cas OFF-target effects via kinetic insulation.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes , Marcação de Genes , Proteínas Recombinantes de Fusão , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular , Ativação Enzimática , Marcação de Genes/métodos , Genes Reporter , Loci Gênicos , Humanos , Cinética , Modelos Teóricos , Especificidade por Substrato
5.
Mol Syst Biol ; 14(8): e8238, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104419

RESUMO

Three-dimensional protein localization intricately determines the functional coordination of cellular processes. The complex spatial context of protein landscape has been assessed by multiplexed immunofluorescent staining or mass spectrometry, applied to 2D cell culture with limited physiological relevance or tissue sections. Here, we present 3D SPECS, an automated technology for 3D Spatial characterization of Protein Expression Changes by microscopic Screening. This workflow comprises iterative antibody staining, high-content 3D imaging, and machine learning for detection of mitoses. This is followed by mapping of spatial protein localization into a spherical, cellular coordinate system, a basis for model-based prediction of spatially resolved affinities of proteins. As a proof-of-concept, we mapped twelve epitopes in 3D-cultured spheroids and investigated the network effects of twelve mitotic cancer drugs. Our approach reveals novel insights into spindle fragility and chromatin stress, and predicts unknown interactions between proteins in specific mitotic pathways. 3D SPECS's ability to map potential drug targets by multiplexed immunofluorescence in 3D cell culture combined with our automated high-content assay will inspire future functional protein expression and drug assays.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Epitopos/genética , Mitose/genética , Proteínas/genética , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Epitopos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Proteínas/efeitos dos fármacos
6.
PLoS Comput Biol ; 13(9): e1005779, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945754

RESUMO

Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.


Assuntos
Transporte Biológico/fisiologia , Modelos Biológicos , Receptores de Superfície Celular/metabolismo , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Biologia Computacional , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Cinética , Microscopia Confocal , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/química , Receptores da Eritropoetina
7.
Prog Biophys Mol Biol ; 130(Pt B): 233-243, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28526353

RESUMO

Two-pore-domain potassium (K2P) channels modulate cellular excitability. The significance of stretch-activated cardiac K2P channels (K2P2.1, TREK-1, KCNK2; K2P4.1, TRAAK, KCNK4; K2P10.1, TREK-2, KCNK10) in heart disease has not been elucidated in detail. The aim of this work was to assess expression and remodeling of mechanosensitive K2P channels in atrial fibrillation (AF) and heart failure (HF) patients in comparison to murine models. Cardiac K2P channel levels were quantified in atrial (A) and ventricular (V) tissue obtained from patients undergoing open heart surgery. In addition, control mice and mouse models of AF (cAMP-response element modulator (CREM)-IbΔC-X transgenic animals) or HF (cardiac dysfunction induced by transverse aortic constriction, TAC) were employed. Human and murine KCNK2 displayed highest mRNA abundance among mechanosensitive members of the K2P channel family (V > A). Disease-associated K2P2.1 remodeling was studied in detail. In patients with impaired left ventricular function, atrial KCNK2 (K2P2.1) mRNA and protein expression was significantly reduced. In AF subjects, downregulation of atrial and ventricular KCNK2 (K2P2.1) mRNA and protein levels was observed. AF-associated suppression of atrial Kcnk2 (K2P2.1) mRNA and protein was recapitulated in CREM-transgenic mice. Ventricular Kcnk2 expression was not significantly altered in mouse models of disease. In conclusion, mechanosensitive K2P2.1 and K2P10.1 K+ channels are expressed throughout the heart. HF- and AF-associated downregulation of KCNK2 (K2P2.1) mRNA and protein levels suggest a mechanistic contribution to cardiac arrhythmogenesis.


Assuntos
Fibrilação Atrial/metabolismo , Insuficiência Cardíaca/metabolismo , Fenômenos Mecânicos , Miocárdio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Idoso , Fibrilação Atrial/genética , Fenômenos Biomecânicos , Regulação para Baixo , Feminino , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Conformação Proteica , Transporte Proteico , Regulação para Cima
8.
Eur Heart J ; 38(22): 1764-1774, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28057773

RESUMO

AIMS: Atrial fibrillation (AF) prevalence increases with advanced stages of left ventricular (LV) dysfunction. Remote proarrhythmic effects of ventricular dysfunction on atrial electrophysiology remain incompletely understood. We hypothesized that repolarizing K2P3.1 K+ channels, previously implicated in AF pathophysiology, may contribute to shaping the atrial action potential (AP), forming a specific electrical substrate with LV dysfunction that might represent a target for personalized antiarrhythmic therapy. METHODS AND RESULTS: A total of 175 patients exhibiting different stages of LV dysfunction were included. Ion channel expression was quantified by real-time polymerase chain reaction and Western blot. Membrane currents and APs were recorded from atrial cardiomyocytes using the patch-clamp technique. Severely reduced LV function was associated with decreased atrial K2P3.1 expression in sinus rhythm patients. In contrast, chronic (c)AF resulted in increased K2P3.1 levels, but paroxysmal (p)AF was not linked to significant K2P3.1 remodelling. LV dysfunction-related suppression of K2P3.1 currents prolonged atrial AP duration (APD) compared with patients with preserved LV function. In individuals with concomitant LV dysfunction and cAF, APD was determined by LV dysfunction-associated prolongation and by cAF-dependent shortening, respectively, consistent with changes in K2P3.1 abundance. K2P3.1 inhibition attenuated APD shortening in cAF patients irrespective of LV function, whereas in pAF subjects with severely reduced LV function, K2P3.1 blockade resulted in disproportionately high APD prolongation. CONCLUSION: LV dysfunction is associated with reduction of atrial K2P3.1 channel expression, while cAF leads to increased K2P3.1 abundance. Differential remodelling of K2P3.1 and APD provides a basis for patient-tailored antiarrhythmic strategies.


Assuntos
Potenciais de Ação/fisiologia , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Idoso , Fibrilação Atrial/tratamento farmacológico , Índice de Massa Corporal , Doença do Sistema de Condução Cardíaco/etiologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Cardiomiopatia Dilatada/fisiopatologia , Regulação para Baixo/fisiologia , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Distribuição por Sexo , Fumar/efeitos adversos , Fumar/fisiopatologia , Regulação para Cima/fisiologia , Remodelação Ventricular/fisiologia
9.
Sci Signal ; 7(316): ra23, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24619646

RESUMO

Apoptosis in response to the ligand CD95L (also known as Fas ligand) is initiated by caspase-8, which is activated by dimerization and self-cleavage at death-inducing signaling complexes (DISCs). Previous work indicated that the degree of substrate cleavage by caspase-8 determines whether a cell dies or survives in response to a death stimulus. To determine how a death ligand stimulus is effectively translated into caspase-8 activity, we assessed this activity over time in single cells with compartmentalized probes that are cleaved by caspase-8 and used multiscale modeling to simultaneously describe single-cell and population data with an ensemble of single-cell models. We derived and experimentally validated a minimal model in which cleavage of caspase-8 in the enzymatic domain occurs in an interdimeric manner through interaction between DISCs, whereas prodomain cleavage sites are cleaved in an intradimeric manner within DISCs. Modeling indicated that sustained membrane-bound caspase-8 activity is followed by transient cytosolic activity, which can be interpreted as a molecular timer mechanism reflected by a limited lifetime of active caspase-8. The activation of caspase-8 by combined intra- and interdimeric cleavage ensures weak signaling at low concentrations of CD95L and strongly accelerated activation at higher ligand concentrations, thereby contributing to precise control of apoptosis.


Assuntos
Apoptose/fisiologia , Caspase 8/metabolismo , Proteína Ligante Fas/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Western Blotting , Caspase 8/química , Simulação por Computador , Citosol/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Dimerização , Citometria de Fluxo , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA