Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011387, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200402

RESUMO

Infections caused by members of the mycobacterium tuberculosis complex [MTC] and nontuberculous mycobacteria [NTM] can induce widespread morbidity and mortality in people. Mycobacterial infections cause both a delayed immune response, which limits rate of bacterial clearance, and formation of granulomas, which contain bacterial spread, but also contribute to lung damage, fibrosis, and morbidity. Granulomas also limit access of antibiotics to bacteria, which may facilitate development of resistance. Bacteria resistant to some or all antibiotics cause significant morbidity and mortality, and newly developed antibiotics readily engender resistance, highlighting the need for new therapeutic approaches. Imatinib mesylate, a cancer drug used to treat chronic myelogenous leukemia [CML] that targets Abl and related tyrosine kinases, is a possible host-directed therapeutic [HDT] for mycobacterial infections, including those causing TB. Here, we use the murine Mycobacterium marinum [Mm] infection model, which induces granulomatous tail lesions. Based on histological measurements, imatinib reduces both lesion size and inflammation of surrounding tissue. Transcriptomic analysis of tail lesions indicates that imatinib induces gene signatures indicative of immune activation and regulation at early time points post infection that resemble those seen at later ones, suggesting that imatinib accelerates but does not substantially alter anti-mycobacterial immune responses. Imatinib likewise induces signatures associated with cell death and promotes survival of bone marrow-derived macrophages [BMDMs] in culture following infection with Mm. Notably, the capacity of imatinib to limit formation and growth of granulomas in vivo and to promote survival of BMDMs in vitro depends upon caspase 8, a key regulator of cell survival and death. These data provide evidence for the utility of imatinib as an HDT for mycobacterial infections in accelerating and regulating immune responses, and limiting pathology associated with granulomas, which may mitigate post-treatment morbidity.


Assuntos
Piperazinas , Pirimidinas , Humanos , Animais , Camundongos , Mesilato de Imatinib/farmacologia , Pirimidinas/farmacologia , Piperazinas/farmacologia , Benzamidas , Antibacterianos/uso terapêutico , Granuloma/tratamento farmacológico
2.
Sci Adv ; 9(8): eade8653, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827370

RESUMO

During aging, environmental stressors and mutations along with reduced DNA repair cause germ cell aneuploidy and genome instability, which limits fertility and embryo development. Benevolent commensal microbiota and dietary plants secrete indoles, which improve healthspan and reproductive success, suggesting regulation of germ cell quality. We show that indoles prevent aneuploidy and promote DNA repair and embryo viability, which depends on age and genotoxic stress levels and affects embryo quality across generations. In young animals or with low doses of radiation, indoles promote DNA repair and embryo viability; however, in older animals or with high doses of radiation, indoles promote death of the embryo. These studies reveal a previously unknown quality control mechanism by which indole integrates DNA repair and cell death responses to preclude germ cell aneuploidy and ensure transgenerational genome integrity. Such regulation affects healthy aging, reproductive senescence, cancer, and the evolution of genetic diversity in invertebrates and vertebrates.


Assuntos
Aneuploidia , Microbiota , Animais , Reparo do DNA , Morte Celular , Indóis
4.
Nat Immunol ; 23(2): 318-329, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058616

RESUMO

Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-ß, regulatory T cells and IDO1+ PD-L1+ myeloid cells. In a further transcriptomic meta-analysis of peripheral blood from patients with TB, immunoregulatory trends mirror those identified by granuloma imaging. Notably, PD-L1 expression is associated with progression to active TB and treatment response. These data indicate that in TB granulomas, there are local spatially coordinated immunoregulatory programs with systemic manifestations that define active TB.


Assuntos
Granuloma/imunologia , Tuberculose/imunologia , Antígeno B7-H1/imunologia , Células Cultivadas , Citocinas/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Células Mieloides/imunologia
5.
Cell Host Microbe ; 29(8): 1266-1276.e5, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34192517

RESUMO

Necroptosis mediated by Z-nucleic-acid-binding protein (ZBP)1 (also called DAI or DLM1) contributes to innate host defense against viruses by triggering cell death to eliminate infected cells. During infection, vaccinia virus (VACV) protein E3 prevents death signaling by competing for Z-form RNA through an N-terminal Zα domain. In the absence of this E3 domain, Z-form RNA accumulates during the early phase of VACV infection, triggering ZBP1 to recruit receptor interacting protein kinase (RIPK)3 and execute necroptosis. The C-terminal E3 double-strand RNA-binding domain must be retained to observe accumulation of Z-form RNA and induction of necroptosis. Substitutions of Zα from either ZBP1 or the RNA-editing enzyme double-stranded RNA adenosine deaminase (ADAR)1 yields fully functional E3 capable of suppressing virus-induced necroptosis. Overall, our evidence reveals the importance of Z-form RNA generated during VACV infection as a pathogen-associated molecular pattern (PAMP) unleashing ZBP1/RIPK3/MLKL-dependent necroptosis unless suppressed by viral E3.


Assuntos
Necroptose/fisiologia , Proteínas de Ligação a RNA/metabolismo , Vaccinia virus/fisiologia , Proteínas Virais/metabolismo , Adenosina Desaminase/metabolismo , Morte Celular , Humanos , Necroptose/genética , Proteínas Quinases/metabolismo , RNA de Cadeia Dupla , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Vaccinia virus/genética
6.
Proc Natl Acad Sci U S A ; 117(35): 21519-21526, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817517

RESUMO

The intestinal epithelium is a highly dynamic structure that rejuvenates in response to acute stressors and can undergo alterations in cellular composition as animals age. The microbiota, acting via secreted factors related to indole, appear to regulate the sensitivity of the epithelium to stressors and promote epithelial repair via IL-22 and type I IFN signaling. As animals age, the cellular composition of the intestinal epithelium changes, resulting in a decreased proportion of goblet cells in the colon. We show that colonization of young or geriatric mice with bacteria that secrete indoles and various derivatives or administration of the indole derivative indole-3 aldehyde increases proliferation of epithelial cells and promotes goblet cell differentiation, reversing an effect of aging. To induce goblet cell differentiation, indole acts via the xenobiotic aryl hydrocarbon receptor to increase expression of the cytokine IL-10. However, the effects of indoles on goblet cells do not depend on type I IFN or on IL-22 signaling, pathways responsible for protection against acute stressors. Thus, indoles derived from the commensal microbiota regulate intestinal homeostasis, especially during aging, via mechanisms distinct from those used during responses to acute stressors. Indoles may have utility as an intervention to limit the decline of barrier integrity and the resulting systemic inflammation that occurs with aging.


Assuntos
Células Caliciformes/efeitos dos fármacos , Células Caliciformes/microbiologia , Indóis/farmacologia , Interleucina-10/metabolismo , Microbiota/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Envelhecimento/metabolismo , Animais , Bactérias/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Interleucina-10/biossíntese , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muco/metabolismo , Transdução de Sinais , Interleucina 22
7.
BMC Pharmacol Toxicol ; 19(1): 80, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514402

RESUMO

BACKGROUND: Several tyrosine kinase inhibitors (TKIs) developed as anti-cancer drugs, also have anti-viral activity due to their ability to disrupt productive replication and dissemination in infected cells. Consequently, such drugs are attractive candidates for "repurposing" as anti-viral agents. However, clinical evaluation of therapeutics against infectious agents associated with high mortality, but low or infrequent incidence, is often unfeasible. The United States Food and Drug Administration formulated the "Animal Rule" to facilitate use of validated animal models for conducting anti-viral efficacy studies. METHODS: To enable such efficacy studies of two clinically approved TKIs, nilotinib, and imatinib, we first conducted comprehensive pharmacokinetic (PK) studies in relevant rodent and non-rodent animal models. PK of these agents following intravenous and oral dosing were evaluated in C57BL/6 mice, prairie dogs, guinea pigs and Cynomolgus monkeys. Plasma samples were analyzed using an LC-MS/MS method. Secondarily, we evaluated the utility of allometry-based inter-species scaling derived from previously published data to predict the PK parameters, systemic clearance (CL) and the steady state volume of distribution (Vss) of these two drugs in prairie dogs, an animal model not tested thus far. RESULTS: Marked inter-species variability in PK parameters and resulting oral bioavailability was observed. In general, elimination half-lives of these agents in mice and guinea pigs were much shorter (1-3 h) relative to those in larger species such as prairie dogs and monkeys. The longer nilotinib elimination half-life in prairie dogs (i.v., 6.5 h and oral, 7.5 h), facilitated multiple dosing PK and safety assessment. The allometry-based predicted values of the Vss and CL were within 2.0 and 2.5-fold, respectively, of the observed values. CONCLUSIONS: Our results suggest that prairie dogs and monkeys may be suitable rodent and non-rodent species to perform further efficacy testing of these TKIs against orthopoxvirus infections. The use of rodent models such as C57BL/6 mice and guinea pigs for assessing pre-clinical anti-viral efficacy of these two TKIs may be limited due to short elimination and/or low oral bioavailability. Allometry-based correlations, derived from existing literature data, may provide initial estimates, which may serve as a useful guide for pre-clinical PK studies in untested animal models.


Assuntos
Antineoplásicos/farmacocinética , Antivirais/farmacocinética , Mesilato de Imatinib/farmacocinética , Proteínas Tirosina Quinases/farmacocinética , Pirimidinas/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Feminino , Cobaias , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Sciuridae
8.
Blood ; 132(23): 2506-2519, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30257880

RESUMO

The intestinal microbiota in allogeneic bone marrow transplant (allo-BMT) recipients modulates graft-versus-host disease (GVHD), a systemic inflammatory state initiated by donor T cells that leads to colitis, a key determinant of GVHD severity. Indole or indole derivatives produced by tryptophan metabolism in the intestinal microbiota limit intestinal inflammation caused by diverse stressors, so we tested their capacity to protect against GVHD in murine major histocompatibility complex-mismatched models of allo-BMT. Indole effects were assessed by colonization of allo-BMT recipient mice with tryptophanase positive or negative strains of Escherichia coli, or, alternatively, by exogenous administration of indole-3-carboxaldehyde (ICA), an indole derivative. Treatment with ICA limited gut epithelial damage, reduced transepithelial bacterial translocation, and decreased inflammatory cytokine production, reducing GVHD pathology and GVHD mortality, but did not compromise donor T-cell-mediated graft-versus-leukemia responses. ICA treatment also led to recipient-strain-specific tolerance of engrafted T cells. Transcriptional profiling and gene ontology analysis indicated that ICA administration upregulated genes associated with the type I interferon (IFN1) response, which has been shown to protect against radiation-induced intestinal damage and reduce subsequent GVHD pathology. Accordingly, protective effects of ICA following radiation exposure were abrogated in mice lacking IFN1 signaling. Taken together, these data indicate that indole metabolites produced by the intestinal microbiota act via type I IFNs to limit intestinal inflammation and damage associated with myeloablative chemotherapy or radiation exposure and acute GVHD, but preserve antitumor responses, and may provide a therapeutic option for BMT patients at risk for GVHD.


Assuntos
Transplante de Medula Óssea , Escherichia coli/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Doença Enxerto-Hospedeiro , Indóis , Interferon Tipo I/metabolismo , Mucosa Intestinal , Aloenxertos , Animais , Translocação Bacteriana/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/microbiologia , Indóis/farmacocinética , Indóis/farmacologia , Interferon Tipo I/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout
9.
Proc Natl Acad Sci U S A ; 115(1): E62-E71, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255022

RESUMO

Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Triptofano/imunologia , Tuberculoma/imunologia , Tuberculose Pulmonar/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Granuloma/imunologia , Granuloma/patologia , Pulmão/patologia , Macaca mulatta , Macrófagos/imunologia , Macrófagos/patologia , Mycobacterium tuberculosis/patogenicidade , Tuberculoma/patologia , Tuberculose Pulmonar/patologia
10.
PLoS Pathog ; 11(3): e1004770, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25822986

RESUMO

Imatinib mesylate (Gleevec) inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs) and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics "emergency hematopoiesis," a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Francisella/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Mesilato de Imatinib/farmacologia , Mielopoese/efeitos dos fármacos , Neutrófilos/imunologia , Animais , Diferenciação Celular/imunologia , Contagem de Leucócitos , Camundongos , Mielopoese/imunologia
11.
Hepatology ; 61(3): 843-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25331524

RESUMO

UNLABELLED: Chronic liver disease is characterized by the liver enrichment of myeloid dendritic cells (DCs). To assess the role of disease on myelopoiesis, we utilized a systems biology approach to study development in liver-resident cells expressing stem cell marker CD34. In patients with endstage liver disease, liver CD34+ cells were comprised of two subsets, designated CD34+CD146+ and CD34+CD146-, and hematopoietic function was restricted to CD34+CD146- cells. Liver CD34 frequencies were reduced during nonalcoholic steatohepatitis (NASH) and chronic hepatitis C virus (HCV) compared to alcohol liver disease (ALD), and this reduction correlated with viral load in the HCV cohort. To better understand the relationship between liver CD34+CD146+ and CD34+CD146- subsets and any effects of disease on CD34 development, we used gene expression profiling and computational modeling to compare each subset during ALD and HCV. For CD34+CD146+ cells, increased expression of endothelial cell genes including von Willebrand factor, VE-cadherin, and eNOS were observed when compared to CD34+CD146- cells, and minimal effects of ALD and HCV diseases on gene expression were observed. Importantly for CD34+CD146- cells, chronic HCV was associated with a distinct "imprint" of programs related to cell cycle, DNA repair, chemotaxis, development, and activation, with an emphasis on myeloid and B lymphocyte lineages. This HCV signature was further translated in side-by-side analyses, where HCV CD34+CD146- cells demonstrated superior hematopoietic growth, colony formation, and diversification compared to ALD and NASH when cultured identically. Disease-associated effects on hematopoiesis were also evident by phenotypic alterations in the expression of CD14, HLA-DR, and CD16 by myeloid progeny cells. CONCLUSION: Etiology drives progenitor fate within diseased tissues. The liver may be a useful source of hematopoietic cells for therapy, or as therapeutic targets.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Hepacivirus/fisiologia , Fígado/citologia , Biologia de Sistemas , Antígenos CD34/análise , Antígeno CD146/análise , Linhagem da Célula , Hematopoese , Hepatite C Crônica/fisiopatologia , Humanos , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Carga Viral
12.
Infect Immun ; 81(3): 923-34, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23297381

RESUMO

CD98 is a type II transmembrane glycoprotein whose expression increases in intestinal epithelial cells (IECs) during intestinal inflammation. Enteropathogenic Escherichia coli (EPEC) is a food-borne human pathogen that attaches to IECs and injects effector proteins directly into the host cells, thus provoking an inflammatory response. In the present study, we investigated CD98 and EPEC interactions in vitro and ex vivo and examined FVB wild-type (WT) and villin-CD98 transgenic mice overexpressing human CD98 in IECs (hCD98 Tg mice) and infected with Citrobacter rodentium as an in vivo model. In vivo studies indicated that CD98 overexpression, localized to the apical domain of colonic cells, increased the attachment of C. rodentium in mouse colons and resulted in increased expression of proinflammatory markers and decreased expression of anti-inflammatory markers. The proliferative markers Ki-67 and cyclin D1 were significantly increased in the colonic tissue of C. rodentium-infected hCD98 Tg mice compared to that of WT mice. Ex vivo studies correlate with the in vivo data. Small interfering RNA (siRNA) studies with Caco2-BBE cells showed a decrease in adherence of EPEC to Caco2 cells in which CD98 expression was knocked down. In vitro surface plasmon resonance (SPR) experiments showed direct binding between recombinant hCD98 and EPEC/C. rodentium proteins. We also demonstrated that the partial extracellular loop of hCD98 was sufficient for direct binding to EPEC/C. rodentium. These findings demonstrate the importance of the extracellular loop of CD98 in the innate host defense response to intestinal infection by attaching and effacing (A/E) pathogens.


Assuntos
Infecções por Enterobacteriaceae/imunologia , Proteína-1 Reguladora de Fusão/metabolismo , Imunidade Inata , Mucosa Intestinal/metabolismo , Animais , Células CACO-2 , Citrobacter rodentium , Colo , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli Enteropatogênica , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Proteína-1 Reguladora de Fusão/genética , Regulação da Expressão Gênica/imunologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Peroxidase , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
14.
Sci Transl Med ; 4(123): 123ra24, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22378924

RESUMO

Ebola virus causes a fulminant infection in humans resulting in diffuse bleeding, vascular instability, hypotensive shock, and often death. Because of its high mortality and ease of transmission from human to human, Ebola virus remains a biological threat for which effective preventive and therapeutic interventions are needed. An understanding of the mechanisms of Ebola virus pathogenesis is critical for developing antiviral therapeutics. Here, we report that productive replication of Ebola virus is modulated by the c-Abl1 tyrosine kinase. Release of Ebola virus-like particles (VLPs) in a cell culture cotransfection system was inhibited by c-Abl1-specific small interfering RNA (siRNA) or by Abl-specific kinase inhibitors and required tyrosine phosphorylation of the Ebola matrix protein VP40. Expression of c-Abl1 stimulated an increase in phosphorylation of tyrosine 13 (Y(13)) of VP40, and mutation of Y(13) to alanine decreased the release of Ebola VLPs. Productive replication of the highly pathogenic Ebola virus Zaire strain was inhibited by c-Abl1-specific siRNAs or by the Abl-family inhibitor nilotinib by up to four orders of magnitude. These data indicate that c-Abl1 regulates budding or release of filoviruses through a mechanism involving phosphorylation of VP40. This step of the virus life cycle therefore may represent a target for antiviral therapy.


Assuntos
Ebolavirus/enzimologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Efeito Citopatogênico Viral , Ebolavirus/classificação , Ebolavirus/efeitos dos fármacos , Ebolavirus/genética , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/patogenicidade , Células HEK293 , Humanos , Mutação , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/genética , Pirimidinas/farmacologia , Interferência de RNA , Fatores de Tempo , Transfecção , Tirosina , Células Vero , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Liberação de Vírus , Replicação Viral/efeitos dos fármacos
15.
Cell Host Microbe ; 10(5): 475-85, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-22100163

RESUMO

The lengthy course of treatment with currently used antimycobacterial drugs and the resulting emergence of drug-resistant strains have intensified the need for alternative therapies against Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. We show that Mtb and Mycobacterium marinum use ABL and related tyrosine kinases for entry and intracellular survival in macrophages. In mice, the ABL family tyrosine kinase inhibitor, imatinib (Gleevec), when administered prophylactically or therapeutically, reduced both the number of granulomatous lesions and bacterial load in infected organs and was also effective against a rifampicin-resistant strain. Further, when coadministered with current first-line drugs, rifampicin or rifabutin, imatinib acted synergistically. These data implicate host tyrosine kinases in entry and intracellular survival of mycobacteria and suggest that imatinib may have therapeutic efficacy against Mtb. Because imatinib targets host, it is less likely to engender resistance compared to conventional antibiotics and may decrease the development of resistance against coadministered drugs.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Piperazinas/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Tuberculose/microbiologia , Animais , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Benzamidas , Linhagem Celular , Farmacorresistência Bacteriana , Humanos , Mesilato de Imatinib , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Tuberculose/tratamento farmacológico , Virulência
16.
J Virol ; 85(19): 10126-34, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775464

RESUMO

Human polyomaviruses are associated with substantial morbidity in immunocompromised patients, including those with HIV/AIDS, recipients of bone marrow and kidney transplants, and individuals receiving immunomodulatory agents for autoimmune and inflammatory diseases. No effective antipolyomavirus agents are currently available, and no host determinants have been identified to predict susceptibility to polyomavirus-associated diseases. Using the mouse polyomavirus (MPyV) infection model, we recently demonstrated that perforin-granzyme exocytosis, tumor necrosis factor alpha (TNF-α), and Fas did not contribute to control of infection or virus-induced tumors. Gamma interferon (IFN-γ) was recently shown to inhibit replication by human BK polyomavirus in primary cultures of renal tubular epithelial cells. In this study, we provide evidence that IFN-γ is an important component of the host defense against MPyV infection and tumorigenesis. In immortalized and primary cells, IFN-γ reduces expression of MPyV proteins and impairs viral replication. Mice deficient for the IFN-γ receptor (IFN-γR(-/-)) maintain higher viral loads during MPyV infection and are susceptible to MPyV-induced tumors; this increased viral load is not associated with a defective MPyV-specific CD8(+) T cell response. Using an acute MPyV infection kidney transplant model, we further show that IFN-γR(-/-) donor kidneys harbor higher MPyV levels than donor kidneys from wild-type mice. Finally, administration of IFN-γ to persistently infected mice significantly reduces MPyV levels in multiple organs, including the kidney, a major reservoir for persistent mouse and human polyomavirus infections. These findings demonstrate that IFN-γ is an antiviral effector molecule for MPyV infection.


Assuntos
Interferon gama/imunologia , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/patologia , Polyomavirus/imunologia , Polyomavirus/patogenicidade , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Interferon gama/administração & dosagem , Rim/imunologia , Rim/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças dos Roedores/imunologia , Doenças dos Roedores/patologia , Doenças dos Roedores/virologia , Carga Viral , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
17.
J Virol ; 85(1): 21-31, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20962097

RESUMO

Vaccinia virus (VacV) enters mammalian cells, replicates extranuclearly, and produces virions that move to the cell surface along microtubules, fuse with the plasma membrane, and move from infected cells toward apposing cells on actin-filled membranous protrusions or actin tails. To form actin tails, cell-associated enveloped virions (CEV) require Abl and Src family tyrosine kinases. Furthermore, release of CEV from the cell requires Abl but not Src family tyrosine kinases and is blocked by imatinib mesylate (STI-571; Gleevec), an Abl family kinase inhibitor used to treat chronic myelogenous leukemia in humans. Here we demonstrate that the Poxviridae family members monkeypox virus (MPX) and variola virus (VarV) use conserved mechanisms for actin motility and extracellular enveloped virion (EEV) release. Furthermore, we show that imatinib mesylate is effective in a mouse model of infection with VacV, whether delivered prophylactically or postinfection, and restricts spread of virions from the site of inoculation. While inhibitors of both Src and Abl family kinases, such as dasatinib (BMS-354825; Sprycel), are effective in limiting dissemination of VacV, VarV, and MPX in vitro, members of this class of drugs appear to have immunosuppressive effects in vivo that preclude their use as anti-infectives. Together, these data suggest a possible utility for imatinib mesylate in treating smallpox or MPX infections or complications associated with vaccination.


Assuntos
Monkeypox virus/enzimologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Vírus da Varíola/enzimologia , Vírion/fisiologia , Liberação de Vírus/fisiologia , Quinases da Família src/metabolismo , Células 3T3 , Actinas/metabolismo , Animais , Benzamidas , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Mesilato de Imatinib , Camundongos , Camundongos Endogâmicos BALB C , Monkeypox virus/efeitos dos fármacos , Monkeypox virus/fisiologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Vacínia/tratamento farmacológico , Vacínia/prevenção & controle , Vacínia/virologia , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/enzimologia , Vírus da Varíola/efeitos dos fármacos , Vírus da Varíola/fisiologia , Liberação de Vírus/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores
18.
J Virol ; 84(9): 4243-51, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20181697

RESUMO

Sialylated lipids serve as cellular receptors for polyomaviruses. Using pharmacological inhibitors and cell lines derived from knockout mice, we demonstrate that Abl family tyrosine kinases are required for replication of mouse polyomavirus and BK virus, a human polyomavirus associated with allograft failure following kidney transplantation. We show that decreasing Abl family kinase activity results in low levels of cell surface ganglioside receptors for mouse polyomavirus and that inhibition of sialidase activity promotes virion binding in the absence of Abl family kinase activity. These data provide evidence that Abl family kinases reduce ganglioside turnover in the plasma membrane by inhibiting host cell sialidase activity. Thus, Abl family kinases regulate the susceptibility of cells to polyomavirus infection by modulating gangliosides required for viral attachment.


Assuntos
Vírus BK/fisiologia , Proteínas Oncogênicas v-abl/metabolismo , Polyomavirus/fisiologia , Proteínas Tirosina Quinases/metabolismo , Receptores de Superfície Celular/biossíntese , Internalização do Vírus , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Neuraminidase/antagonistas & inibidores
19.
PLoS Pathog ; 4(3): e1000031, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18369477

RESUMO

Internalization of the pathogenic bacterium Pseudomonas aeruginosa by non-phagocytic cells is promoted by rearrangements of the actin cytoskeleton, but the host pathways usurped by this bacterium are not clearly understood. We used RNAi-mediated gene inactivation of approximately 80 genes known to regulate the actin cytoskeleton in Drosophila S2 cells to identify host molecules essential for entry of P. aeruginosa. This work revealed Abl tyrosine kinase, the adaptor protein Crk, the small GTPases Rac1 and Cdc42, and p21-activated kinase as components of a host signaling pathway that leads to internalization of P. aeruginosa. Using a variety of complementary approaches, we validated the role of this pathway in mammalian cells. Remarkably, ExoS and ExoT, type III secreted toxins of P. aeruginosa, target this pathway by interfering with GTPase function and, in the case of ExoT, by abrogating P. aeruginosa-induced Abl-dependent Crk phosphorylation. Altogether, this work reveals that P. aeruginosa utilizes the Abl pathway for entering host cells and reveals unexpected complexity by which the P. aeruginosa type III secretion system modulates this internalization pathway. Our results furthermore demonstrate the applicability of using RNAi screens to identify host signaling cascades usurped by microbial pathogens that may be potential targets for novel therapies directed against treatment of antibiotic-resistant infections.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/microbiologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pseudomonas aeruginosa/patogenicidade , RNA Interferente Pequeno , ADP Ribose Transferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Toxinas Bacterianas/metabolismo , Linhagem Celular , Citoesqueleto/microbiologia , Citoesqueleto/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Proteínas Ativadoras de GTPase/metabolismo , Inativação Gênica , Macrófagos/enzimologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-abl/genética , Pseudomonas aeruginosa/enzimologia , Interferência de RNA
20.
Mol Microbiol ; 63(6): 1748-68, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17367393

RESUMO

Enteropathogenic Escherichia coli (EPEC) cause intestinal inflammation, severe diarrhoea and mortality, particularly among children in developing nations. Upon attachment to intestinal epithelial cells, EPEC induces actin-filled membrane protrusions called 'pedestals' and disrupts microvilli to form attaching and effacing (A/E) lesions. EPEC also disrupts epithelial barrier function and causes colitis. Here we have investigated how virulence factors which orchestrate formation of actin pedestals interface with host tyrosine kinases. We show that Tec-family tyrosine kinases localize beneath EPEC and, with Abl-family kinases, comprise a set of redundant host kinases utilized by EPEC to form actin pedestals. We also show that Tir, a virulence factor required for pathogenesis, contains a polyproline region (PPR) that interacts with SH3 domains of redundant kinases, and a phosphorylation site (Y474) that interacts with kinase SH2 domains. These interactions are essential for pedestal formation, and mimic activation of kinases by cellular ligands. Our results suggest that a positive feedback loop exists in which initial phosphorylation of Tir on Y474 by tyrosine kinases causes recruitment of additional redundant kinases via PPR-SH3 interactions and PO(3)-Y474-SH2 interactions, which in turn phosphorylate other Tir molecules as well as proteins that catalyse formation of actin pedestals.


Assuntos
Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas Tirosina Quinases/metabolismo , Receptores de Superfície Celular/fisiologia , Actinas/metabolismo , Linhagem Celular , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Proteínas Tirosina Quinases/análise , Proteínas Tirosina Quinases/genética , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA