Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Radiol Exp ; 8(1): 42, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589742

RESUMO

BACKGROUND: Developing trustworthy artificial intelligence (AI) models for clinical applications requires access to clinical and imaging data cohorts. Reusing of publicly available datasets has the potential to fill this gap. Specifically in the domain of breast cancer, a large archive of publicly accessible medical images along with the corresponding clinical data is available at The Cancer Imaging Archive (TCIA). However, existing datasets cannot be directly used as they are heterogeneous and cannot be effectively filtered for selecting specific image types required to develop AI models. This work focuses on the development of a homogenized dataset in the domain of breast cancer including clinical and imaging data. METHODS: Five datasets were acquired from the TCIA and were harmonized. For the clinical data harmonization, a common data model was developed and a repeatable, documented "extract-transform-load" process was defined and executed for their homogenization. Further, Digital Imaging and COmmunications in Medicine (DICOM) information was extracted from magnetic resonance imaging (MRI) data and made accessible and searchable. RESULTS: The resulting harmonized dataset includes information about 2,035 subjects with breast cancer. Further, a platform named RV-Cherry-Picker enables search over both the clinical and diagnostic imaging datasets, providing unified access, facilitating the downloading of all study imaging that correspond to specific series' characteristics (e.g., dynamic contrast-enhanced series), and reducing the burden of acquiring the appropriate set of images for the respective AI model scenario. CONCLUSIONS: RV-Cherry-Picker provides access to the largest, publicly available, homogenized, imaging/clinical dataset for breast cancer to develop AI models on top. RELEVANCE STATEMENT: We present a solution for creating merged public datasets supporting AI model development, using as an example the breast cancer domain and magnetic resonance imaging images. KEY POINTS: • The proposed platform allows unified access to the largest, homogenized public imaging dataset for breast cancer. • A methodology for the semantically enriched homogenization of public clinical data is presented. • The platform is able to make a detailed selection of breast MRI data for the development of AI models.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Inteligência Artificial , Mama
2.
JCO Clin Cancer Inform ; 7: e2300101, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38061012

RESUMO

PURPOSE: The explosion of big data and artificial intelligence has rapidly increased the need for integrated, homogenized, and harmonized health data. Many common data models (CDMs) and standard vocabularies have appeared in an attempt to offer harmonized access to the available information, with Observational Medical Outcomes Partnership (OMOP)-CDM being one of the most prominent ones, allowing the standardization and harmonization of health care information. However, despite its flexibility, still capturing imaging metadata along with the corresponding clinical data continues to pose a challenge. This challenge arises from the absence of a comprehensive standard representation for image-related information and subsequent image curation processes and their interlinkage with the respective clinical information. Successful resolution of this challenge holds the potential to enable imaging and clinical data to become harmonized, quality-checked, annotated, and ready to be used in conjunction, in the development of artificial intelligence models and other data-dependent use cases. METHODS: To address this challenge, we introduce medical imaging (MI)-CDM-an extension of the OMOP-CDM specifically designed for registering medical imaging data and curation-related processes. Our modeling choices were the result of iterative numerous discussions among clinical and AI experts to enable the integration of imaging and clinical data in the context of the ProCAncer-I project, for answering a set of clinical questions across the prostate cancer's continuum. RESULTS: Our MI-CDM extension has been successfully implemented for the use case of prostate cancer for integrating imaging and curation metadata along with clinical information by using the OMOP-CDM and its oncology extension. CONCLUSION: By using our proposed terminologies and standardized attributes, we demonstrate how diverse imaging modalities can be seamlessly integrated in the future.


Assuntos
Metadados , Neoplasias da Próstata , Masculino , Humanos , Inteligência Artificial , Bases de Dados Factuais , Diagnóstico por Imagem
3.
Eur Radiol Exp ; 7(1): 20, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150779

RESUMO

Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of 'sick-care' to the era of healthcare and prevention. The development of AI requires access to large, complete, and harmonized real-world datasets, representative of the population, and disease diversity. However, to date, efforts are fragmented, based on single-institution, size-limited, and annotation-limited datasets. Available public datasets (e.g., The Cancer Imaging Archive, TCIA, USA) are limited in scope, making model generalizability really difficult. In this direction, five European Union projects are currently working on the development of big data infrastructures that will enable European, ethically and General Data Protection Regulation-compliant, quality-controlled, cancer-related, medical imaging platforms, in which both large-scale data and AI algorithms will coexist. The vision is to create sustainable AI cloud-based platforms for the development, implementation, verification, and validation of trustable, usable, and reliable AI models for addressing specific unmet needs regarding cancer care provision. In this paper, we present an overview of the development efforts highlighting challenges and approaches selected providing valuable feedback to future attempts in the area.Key points• Artificial intelligence models for health imaging require access to large amounts of harmonized imaging data and metadata.• Main infrastructures adopted either collect centrally anonymized data or enable access to pseudonymized distributed data.• Developing a common data model for storing all relevant information is a challenge.• Trust of data providers in data sharing initiatives is essential.• An online European Union meta-tool-repository is a necessity minimizing effort duplication for the various projects in the area.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Diagnóstico por Imagem , Previsões , Big Data
4.
Eur Radiol Exp ; 6(1): 29, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773546

RESUMO

A huge amount of imaging data is becoming available worldwide and an incredible range of possible improvements can be provided by artificial intelligence algorithms in clinical care for diagnosis and decision support. In this context, it has become essential to properly manage and handle these medical images and to define which metadata have to be considered, in order for the images to provide their full potential. Metadata are additional data associated with the images, which provide a complete description of the image acquisition, curation, analysis, and of the relevant clinical variables associated with the images. Currently, several data models are available to describe one or more subcategories of metadata, but a unique, common, and standard data model capable of fully representing the heterogeneity of medical metadata has not been yet developed. This paper reports the state of the art on metadata models for medical imaging, the current limitations and further developments, and describes the strategy adopted by the Horizon 2020 "AI for Health Imaging" projects, which are all dedicated to the creation of imaging biobanks.


Assuntos
Inteligência Artificial , Metadados , Algoritmos , Bancos de Espécimes Biológicos , Diagnóstico por Imagem/métodos
5.
Stud Health Technol Inform ; 294: 244-248, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612065

RESUMO

Prostate cancer (PCa) is one of the most prevalent cancers in the male population. Current clinical practices lead to overdiagnosis and overtreatment necessitating more effective tools for improving diagnosis, thus the quality of life of patients. Recent advances in infrastructure, computing power and artificial intelligence enable the collection of tremendous amounts of clinical and imaging data that could assist towards this end. ProCAncer-I project aims to develop an AI platform integrating imaging data and models and hosting the largest collection of PCa (mp)MRI, anonymized image data worldwide. In this paper, we present an overview of the overall architecture focusing on the data ingestion part of the platform. We describe the workflow followed for uploading the data and the main repositories for storing imaging data, clinical data and their corresponding metadata.


Assuntos
Inteligência Artificial , Neoplasias da Próstata , Ingestão de Alimentos , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA