Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Phys Med ; 124: 103431, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059250

RESUMO

PURPOSE: The objective of our IAEA-coordinated international study was to assess CT practices and radiation doses from multiple hospitals across several African countries. METHODS: The study included 13 hospitals from Africa which contributed information on minimum of 20 consecutive patients who underwent head, chest, and/or abdomen-pelvis CT. Prior to the data recording step, all hospitals had a mandatory one-hour training on the best practices in recording the relevant data elements. The recorded data elements included patient age, weight, protocol name, scanner information, acquisition parameters, and radiation dose descriptors including phase-specific CT dose index volume (CTDIvol in mGy) and dose length product (DLP in mGy.cm). We estimated the median and interquartile range of body-region specific CTDIvol and DLP and compared data across sites and countries using the Kruskal-Wallis H Test for non-normal distribution, analysis of variance. RESULTS: A total of 1061 patients (mean age 50 ± 19 years) were included in the study. 16 % of CT exams had no stated clinical indications for CT examinations of the head (32/343, 9 %), chest (50/281, 18 %), abdomen-pelvis (67/243, 28 %), and/or chest-abdomen-pelvis CT (24/194, 12 %). Most hospitals used multiphase CT protocols for abdomen-pelvis (9/11 hospitals) and chest CT (10/12 hospitals), regardless of clinical indications. Total median DLP values for head (953 mGy.cm), chest (405 mGy.cm), and abdomen-pelvis (1195 mGy.cm) CT were above the UK, German, and American College of Radiology Diagnostic Reference Levels (DRLs). CONCLUSIONS: Concerning variations in CT practices and protocols across several hospitals in Africa were demonstrated, emphasizing the need for better protocol optimization to improve patient safety.

2.
Eur J Radiol ; 175: 111448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574510

RESUMO

PURPOSE: Aim of the recent study is to point out a method to optimize quality of CT scans in oncological patients with port systems. This study investigates the potential of photon counting computed tomography (PCCT) for reduction of beam hardening artifacts caused by port-implants in chest imaging by means of spectral reconstructions. METHOD: In this retrospective single-center study, 8 ROIs for 19 spectral reconstructions (polyenergetic imaging, monoenergetic reconstructions from 40 to 190 keV as well as iodine maps and virtual non contrast (VNC)) of 49 patients with pectoral port systems undergoing PCCT of the chest for staging of oncologic disease were measured. Mean values and standard deviation (SD) Hounsfield unit measurements of port-chamber associated hypo- and hyperdense artifacts, bilateral muscles and vessels has been carried out. Also, a structured assessment of artifacts and imaging findings was performed by two radiologists. RESULTS: A significant association of keV with iodine contrast as well as artifact intensity was noted (all p < 0.001). In qualitative assessment, utilization of 120 keV monoenergetic reconstructions could reduce severe and pronounced artifacts completely, as compared to lower keV reconstructions (p < 0.001). Regarding imaging findings, no significant difference between monoenergetic reconstructions was noted (all p > 0.05). In cases with very high iodine concentrations in the subclavian vein, image distortions were noted at 40 keV images (p < 0.01). CONCLUSIONS: The present study demonstrates that PCCT derived spectral reconstructions can be used in oncological imaging of the thorax to reduce port-derived beam-hardening artefacts. When evaluating image data sets within a staging, it can be particularly helpful to consider the 120 keV VMIs, in which the artefacts are comparatively low.


Assuntos
Artefatos , Radiografia Torácica , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Tomografia Computadorizada por Raios X/métodos , Radiografia Torácica/métodos , Estudos Retrospectivos , Adulto , Idoso de 80 Anos ou mais , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Fótons , Reprodutibilidade dos Testes
3.
Radiol Artif Intell ; 6(1): e220221, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166328

RESUMO

Purpose To determine whether saliency maps in radiology artificial intelligence (AI) are vulnerable to subtle perturbations of the input, which could lead to misleading interpretations, using prediction-saliency correlation (PSC) for evaluating the sensitivity and robustness of saliency methods. Materials and Methods In this retrospective study, locally trained deep learning models and a research prototype provided by a commercial vendor were systematically evaluated on 191 229 chest radiographs from the CheXpert dataset and 7022 MR images from a human brain tumor classification dataset. Two radiologists performed a reader study on 270 chest radiograph pairs. A model-agnostic approach for computing the PSC coefficient was used to evaluate the sensitivity and robustness of seven commonly used saliency methods. Results The saliency methods had low sensitivity (maximum PSC, 0.25; 95% CI: 0.12, 0.38) and weak robustness (maximum PSC, 0.12; 95% CI: 0.0, 0.25) on the CheXpert dataset, as demonstrated by leveraging locally trained model parameters. Further evaluation showed that the saliency maps generated from a commercial prototype could be irrelevant to the model output, without knowledge of the model specifics (area under the receiver operating characteristic curve decreased by 8.6% without affecting the saliency map). The human observer studies confirmed that it is difficult for experts to identify the perturbed images; the experts had less than 44.8% correctness. Conclusion Popular saliency methods scored low PSC values on the two datasets of perturbed chest radiographs, indicating weak sensitivity and robustness. The proposed PSC metric provides a valuable quantification tool for validating the trustworthiness of medical AI explainability. Keywords: Saliency Maps, AI Trustworthiness, Dynamic Consistency, Sensitivity, Robustness Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Yanagawa and Sato in this issue.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Estudos Retrospectivos , Radiografia , Radiologistas
6.
Acad Radiol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38087718

RESUMO

RATIONALE AND OBJECTIVES: To assess differences in radiomics derived from semi-automatic segmentation of liver metastases for stable disease (SD), partial response (PR), and progressive disease (PD) based on RECIST1.1 and to assess if radiomics alone at baseline can predict response. MATERIALS AND METHODS: Our IRB-approved study included 203 women (mean age 54 ± 11 years) with metastatic liver disease from breast cancer. All patients underwent contrast abdomen-pelvis CT in the portal venous phase at two points: baseline (pre-treatment) and follow-up (between 3 and 12 months following treatment). Patients were subcategorized into three subgroups based on RECIST 1.1 criteria (Response Evaluation Criteria in Solid Tumors version 1.1): 66 with SD, 69 with PR, and 68 with PD on follow-up CT. The deidentified baseline and follow-up CT images were exported to the radiomics prototype. The prototype enabled semi-automatic segmentation of the target liver lesions for the extraction of first and high order radiomics. Statistical analyses with logistic regression and random forest classifiers were performed to differentiate SD from PD and PR. RESULTS: There was no significant difference between the radiomics on the baseline and follow-up CT images of patients with SD (area under the curve (AUC): 0.3). Random forest classifier differentiated patients with PR with an AUC of 0.845. The most relevant feature was the large dependence emphasis's high and low pass wavelet filter (derived gray level dependence matrix features). Random forest classifier differentiated PD with an AUC of 0.731, with the most relevant feature being the surface-to-volume ratio. There was no difference in radiomics among the three groups at baseline; therefore, a response could not be predicted. CONCLUSION: Radiomics of liver metastases with semi-automatic segmentation demonstrate differences between SD from PR and PD. SUMMARY STATEMENT: Semiautomatic segmentation and radiomics of metastatic liver disease demonstrate differences in SD from the PR and progressive metastatic on the baseline and follow-up CT. Despite substantial variations in the scanners, acquisition, and reconstruction parameters, radiomics had an AUC of 0.84-0.89 for differentiating stable hepatic metastases from decreasing and increasing metastatic disease.

7.
Diagnostics (Basel) ; 13(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37835902

RESUMO

Skin lesion classification plays a crucial role in dermatology, aiding in the early detection, diagnosis, and management of life-threatening malignant lesions. However, standalone transfer learning (TL) models failed to deliver optimal performance. In this study, we present an attention-enabled ensemble-based deep learning technique, a powerful, novel, and generalized method for extracting features for the classification of skin lesions. This technique holds significant promise in enhancing diagnostic accuracy by using seven pre-trained TL models for classification. Six ensemble-based DL (EBDL) models were created using stacking, softmax voting, and weighted average techniques. Furthermore, we investigated the attention mechanism as an effective paradigm and created seven attention-enabled transfer learning (aeTL) models before branching out to construct three attention-enabled ensemble-based DL (aeEBDL) models to create a reliable, adaptive, and generalized paradigm. The mean accuracy of the TL models is 95.30%, and the use of an ensemble-based paradigm increased it by 4.22%, to 99.52%. The aeTL models' performance was superior to the TL models in accuracy by 3.01%, and aeEBDL models outperformed aeTL models by 1.29%. Statistical tests show significant p-value and Kappa coefficient along with a 99.6% reliability index for the aeEBDL models. The approach is highly effective and generalized for the classification of skin lesions.

8.
J Appl Physiol (1985) ; 134(6): 1496-1507, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167261

RESUMO

Pulmonary perfusion has been poorly characterized in acute respiratory distress syndrome (ARDS). Optimizing protocols to measure pulmonary blood flow (PBF) via dynamic contrast-enhanced (DCE) computed tomography (CT) could improve understanding of how ARDS alters pulmonary perfusion. In this study, comparative evaluations of injection protocols and tracer-kinetic analysis models were performed based on DCE-CT data measured in ventilated pigs with and without lung injury. Ten Yorkshire pigs (five with lung injury, five healthy) were anesthetized, intubated, and mechanically ventilated; lung injury was induced by bronchial hydrochloric acid instillation. Each DCE-CT scan was obtained during a 30-s end-expiratory breath-hold. Reproducibility of PBF measurements was evaluated in three pigs. In eight pigs, undiluted and diluted Isovue-370 were separately injected to evaluate the effect of contrast viscosity on estimated PBF values. PBF was estimated with the peak-enhancement and the steepest-slope approach. Total-lung PBF was estimated in two healthy pigs to compare with cardiac output measured invasively by thermodilution in the pulmonary artery. Repeated measurements in the same animals yielded a good reproducibility of computed PBF maps. Injecting diluted isovue-370 resulted in smaller contrast-time curves in the pulmonary artery (P < 0.01) and vein (P < 0.01) without substantially diminishing peak signal intensity (P = 0.46 in the pulmonary artery) compared with the pure contrast agent since its viscosity is closer to that of blood. As compared with the peak-enhancement model, PBF values estimated by the steepest-slope model with diluted contrast were much closer to the cardiac output (R2 = 0.82) as compared with the peak-enhancement model. DCE-CT using the steepest-slope model and diluted contrast agent provided reliable quantitative estimates of PBF.NEW & NOTEWORTHY Dynamic contrast-enhanced CT using a lower-viscosity contrast agent in combination with tracer-kinetic analysis by the steepest-slope model improves pulmonary blood flow measurements and assessment of regional distributions of lung perfusion.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Suínos , Meios de Contraste , Iopamidol , Reprodutibilidade dos Testes , Cinética , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Perfusão
9.
Acta Radiol ; 64(8): 2347-2356, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37138467

RESUMO

BACKGROUND: No quantitative computed tomography (CT) biomarker is actually sufficiently accurate to assess Crohn's disease (CD) lesion activity, with adequate precision to guide clinical decisions. PURPOSE: To assess the available literature on the use of iodine concentration (IC), from multi-spectral CT acquisition, as a quantitative parameter able to distinguish healthy from affected bowel and assess CD bowel activity and heterogeneity of activity along the involved segments. MATERIAL AND METHODS: A literature search was conducted to identify original research studies published up to February 2022. The inclusion criteria were original research papers (>10 human participants), English language publications, focus on dual-energy CT (DECT) of CD with iodine quantification (IQ) as an outcome measure. The exclusion criteria were animal-only studies, languages other than English, review articles, case reports, correspondence, and study populations <10 patients. RESULTS: Nine studies were included in this review; all of which showed a strong correlation between IC measurements and CD activity markers, such as CD activity index (CDAI), endoscopy findings and simple endoscopic score for Crohn's disease (SES-CD), and routine CT enterography (CTE) signs and histopathologic score. Statistically significant differences in IC were reported between affected bowel segments and healthy ones (higher P value was P < 0.001), normal segments and those with active inflammation (P < 0.0001) as well as between patients with active disease and those in remission (P < 0.001). CONCLUSION: The mean normalized IC at DECTE could be a reliable tool in assisting radiologists in the diagnosis, classification and grading of CD activity.


Assuntos
Doença de Crohn , Iodo , Humanos , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/patologia , Tomografia Computadorizada por Raios X/métodos , Intestinos , Biomarcadores
10.
Clin Imaging ; 95: 47-51, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610270

RESUMO

PURPOSE: To assess feasibility of automated segmentation and measurement of tracheal collapsibility for detecting tracheomalacia on inspiratory and expiratory chest CT images. METHODS: Our study included 123 patients (age 67 ± 11 years; female: male 69:54) who underwent clinically indicated chest CT examinations in both inspiration and expiration phases. A thoracic radiologist measured anteroposterior length of trachea in inspiration and expiration phase image at the level of maximum collapsibility or aortic arch (in absence of luminal change). Separately, another investigator separately processed the inspiratory and expiratory DICOM CT images with Airway Segmentation component of a commercial COPD software (IntelliSpace Portal, Philips Healthcare). Upon segmentation, the software automatically estimated average lumen diameter (in mm) and lumen area (sq.mm) both along the entire length of trachea and at the level of aortic arch. Data were analyzed with independent t-tests and area under the receiver operating characteristic curve (AUC). RESULTS: Of the 123 patients, 48 patients had tracheomalacia and 75 patients did not. Ratios of inspiration to expiration phases average lumen area and lumen diameter from the length of trachea had the highest AUC of 0.93 (95% CI = 0.88-0.97) for differentiating presence and absence of tracheomalacia. A decrease of ≥25% in average lumen diameter had sensitivity of 82% and specificity of 87% for detecting tracheomalacia. A decrease of ≥40% in the average lumen area had sensitivity and specificity of 86% for detecting tracheomalacia. CONCLUSION: Automatic segmentation and measurement of tracheal dimension over the entire tracheal length is more accurate than a single-level measurement for detecting tracheomalacia.


Assuntos
Traqueomalácia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Traqueomalácia/diagnóstico por imagem , Traqueia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Sensibilidade e Especificidade , Curva ROC
11.
PLoS One ; 17(4): e0267213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486572

RESUMO

A standardized objective evaluation method is needed to compare machine learning (ML) algorithms as these tools become available for clinical use. Therefore, we designed, built, and tested an evaluation pipeline with the goal of normalizing performance measurement of independently developed algorithms, using a common test dataset of our clinical imaging. Three vendor applications for detecting solid, part-solid, and groundglass lung nodules in chest CT examinations were assessed in this retrospective study using our data-preprocessing and algorithm assessment chain. The pipeline included tools for image cohort creation and de-identification; report and image annotation for ground-truth labeling; server partitioning to receive vendor "black box" algorithms and to enable model testing on our internal clinical data (100 chest CTs with 243 nodules) from within our security firewall; model validation and result visualization; and performance assessment calculating algorithm recall, precision, and receiver operating characteristic curves (ROC). Algorithm true positives, false positives, false negatives, recall, and precision for detecting lung nodules were as follows: Vendor-1 (194, 23, 49, 0.80, 0.89); Vendor-2 (182, 270, 61, 0.75, 0.40); Vendor-3 (75, 120, 168, 0.32, 0.39). The AUCs for detection of solid (0.61-0.74), groundglass (0.66-0.86) and part-solid (0.52-0.86) nodules varied between the three vendors. Our ML model validation pipeline enabled testing of multi-vendor algorithms within the institutional firewall. Wide variations in algorithm performance for detection as well as classification of lung nodules justifies the premise for a standardized objective ML algorithm evaluation process.


Assuntos
Neoplasias Pulmonares , Algoritmos , Humanos , Neoplasias Pulmonares/diagnóstico , Aprendizado de Máquina , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
12.
Comput Biol Med ; 143: 105273, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35228172

RESUMO

BACKGROUND: Artificial intelligence (AI) has become a prominent technique for medical diagnosis and represents an essential role in detecting brain tumors. Although AI-based models are widely used in brain lesion segmentation (BLS), understanding their effectiveness is challenging due to their complexity and diversity. Several reviews on brain tumor segmentation are available, but none of them describe a link between the threats due to risk-of-bias (RoB) in AI and its architectures. In our review, we focused on linking RoB and different AI-based architectural Cluster in popular DL framework. Further, due to variance in these designs and input data types in medical imaging, it is necessary to present a narrative review considering all facets of BLS. APPROACH: The proposed study uses a PRISMA strategy based on 75 relevant studies found by searching PubMed, Scopus, and Google Scholar. Based on the architectural evolution, DL studies were subsequently categorized into four classes: convolutional neural network (CNN)-based, encoder-decoder (ED)-based, transfer learning (TL)-based, and hybrid DL (HDL)-based architectures. These studies were then analyzed considering 32 AI attributes, with clusters including AI architecture, imaging modalities, hyper-parameters, performance evaluation metrics, and clinical evaluation. Then, after these studies were scored for all attributes, a composite score was computed, normalized, and ranked. Thereafter, a bias cutoff (AP(ai)Bias 1.0, AtheroPoint, Roseville, CA, USA) was established to detect low-, moderate- and high-bias studies. CONCLUSION: The four classes of architectures, from best-to worst-performing, are TL > ED > CNN > HDL. ED-based models had the lowest AI bias for BLS. This study presents a set of three primary and six secondary recommendations for lowering the RoB.

13.
Phys Med ; 96: 123-129, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278930

RESUMO

OBJECTIVE: To present results of the first national survey on reference levels of CT imaging performed for the treatment planning purposes in radiation oncology in Croatia. METHODS: Data for CT protocols of five anatomical regions including head, head and neck, pelvis, breast, and thorax were collected at eight radiation oncology departments in Croatia. Data included volume CT dose index (CTDIvol), dose-length product (DLP), scan length and set of acquisition and reconstruction parameters. Data on a total of 600 patients were collected. Median values of scan length, DLP and CTDIvol were calculated for each acquisition protocol. Third quartiles of the median CTDIvol and DLP values were proposed as the national radiotherapy planning reference levels (RPRL). RESULTS: The largest CoV were assessed for RT Breast (63.8% for CTDIvol), RT Thorax (79.7% for DLP) and RT H&N (21.2% for scan length). RT Head had the lowest CoV for CTDIvol (1,9%) and DLP (17,2%), while RT Breast had the lowest coefficient of variation for scan length (12.8%). Proposed national RPRLs are: for RT Head CTDIvol16cm = 62 mGy and DLP16cm = 1738 mGy.cm; for RT H&N CTDIvol16cm = 35 mGy and DLP16cm = 1444 mGy.cm; for RT Breast CTDIvol32cm = 16 mGy and DLP32cm = 731 mGy.cm; for RT Thorax CTDIvol32cm = 17 mGy and DLP32cm = 865 mGy.cm; for RT Pelvis CTDIvol32cm = 20 mGy and DLP32cm = 1133 mGy.cm. CONCLUSIONS: Results of this study show variations in CT imaging for treatment planning practice at the national level which call for optimization of procedures.


Assuntos
Radioterapia (Especialidade) , Cabeça , Humanos , Doses de Radiação , Valores de Referência , Tórax , Tomografia Computadorizada por Raios X
14.
Acad Radiol ; 29(5): 705-713, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34412944

RESUMO

RATIONALE AND OBJECTIVES: To compare dual energy CT (DECT) quantitative metrics and radiomics for differentiating benign and malignant pancreatic lesions on contrast enhanced abdomen CT. MATERIALS AND METHODS: Our study included 103 patients who underwent contrast-enhanced DECT for assessing focal pancreatic lesions at one of the two hospitals (Site A: age 68 ± 12 yrs; malignant = 41, benign = 18; Site B: age 46 ± 2 yrs; malignant = 23, benign = 21). All malignant lesions had histologic confirmation, and benign lesions were stable on follow up CT (>12 months) or had characteristic benign features on MRI. Arterial-phase, low- and high-kV DICOM images were processed with the DECT Tumor Analysis (DETA) to obtain DECT quantitative metrics such as HU, iodine and water content from a region of interest (ROI) over focal pancreatic lesions. Separately, we obtained DECT radiomics from the same ROI. Data were analyzed with multiple logistic regression and receiver operating characteristics to generate area under the curve (AUC) for best predictive variables. RESULTS: DECT quantitative metrics and radiomics had AUCs of 0.98-0.99 at site A and 0.89-0.94 at site B data for classifying benign and malignant pancreatic lesions. There was no significant difference in the AUCs and accuracies of DECT quantitative metrics and radiomics from lesion rims and volumes among patients at both sites (p > 0.05). Supervised learning-based model with data from the two sites demonstrated best AUCs of 0.94 (DECT radiomics) and 0.90 (DECT quantitative metrics) for characterizing pancreatic lesions as benign or malignant. CONCLUSION: Compared to complex DECT radiomics, quantitative DECT information provide a simpler but accurate method of differentiating benign and malignant pancreatic lesions.


Assuntos
Benchmarking , Neoplasias Pancreáticas , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
15.
JAMA Netw Open ; 4(12): e2141096, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964851

RESUMO

Importance: Most early lung cancers present as pulmonary nodules on imaging, but these can be easily missed on chest radiographs. Objective: To assess if a novel artificial intelligence (AI) algorithm can help detect pulmonary nodules on radiographs at different levels of detection difficulty. Design, Setting, and Participants: This diagnostic study included 100 posteroanterior chest radiograph images taken between 2000 and 2010 of adult patients from an ambulatory health care center in Germany and a lung image database in the US. Included images were selected to represent nodules with different levels of detection difficulties (from easy to difficult), and comprised both normal and nonnormal control. Exposures: All images were processed with a novel AI algorithm, the AI Rad Companion Chest X-ray. Two thoracic radiologists established the ground truth and 9 test radiologists from Germany and the US independently reviewed all images in 2 sessions (unaided and AI-aided mode) with at least a 1-month washout period. Main Outcomes and Measures: Each test radiologist recorded the presence of 5 findings (pulmonary nodules, atelectasis, consolidation, pneumothorax, and pleural effusion) and their level of confidence for detecting the individual finding on a scale of 1 to 10 (1 representing lowest confidence; 10, highest confidence). The analyzed metrics for nodules included sensitivity, specificity, accuracy, and receiver operating characteristics curve area under the curve (AUC). Results: Images from 100 patients were included, with a mean (SD) age of 55 (20) years and including 64 men and 36 women. Mean detection accuracy across the 9 radiologists improved by 6.4% (95% CI, 2.3% to 10.6%) with AI-aided interpretation compared with unaided interpretation. Partial AUCs within the effective interval range of 0 to 0.2 false positive rate improved by 5.6% (95% CI, -1.4% to 12.0%) with AI-aided interpretation. Junior radiologists saw greater improvement in sensitivity for nodule detection with AI-aided interpretation as compared with their senior counterparts (12%; 95% CI, 4% to 19% vs 9%; 95% CI, 1% to 17%) while senior radiologists experienced similar improvement in specificity (4%; 95% CI, -2% to 9%) as compared with junior radiologists (4%; 95% CI, -3% to 5%). Conclusions and Relevance: In this diagnostic study, an AI algorithm was associated with improved detection of pulmonary nodules on chest radiographs compared with unaided interpretation for different levels of detection difficulty and for readers with different experience.


Assuntos
Algoritmos , Neoplasias Pulmonares/diagnóstico por imagem , Adulto , Inteligência Artificial , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador , Radiografia Torácica , Sensibilidade e Especificidade , Nódulo Pulmonar Solitário/diagnóstico por imagem
16.
Radiat Prot Dosimetry ; 197(3-4): 135-145, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34875692

RESUMO

We assessed variations in chest CT usage, radiation dose and image quality in COVID-19 pneumonia. Our study included all chest CT exams performed in 533 patients from 6 healthcare sites from Brazil. We recorded patients' age, gender and body weight and the information number of CT exams per patient, scan parameters and radiation doses (volume CT dose index-CTDIvol and dose length product-DLP). Six radiologists assessed all chest CT exams for the type of pulmonary findings and classified CT appearance of COVID-19 pneumonia as typical, indeterminate, atypical or negative. In addition, each CT was assessed for diagnostic quality (optimal or suboptimal) and presence of artefacts. Artefacts were frequent (367/841), often related to respiratory motion (344/367 chest CT exams with artefacts) and resulted in suboptimal evaluation in mid-to-lower lungs (176/344) or the entire lung (31/344). There were substantial differences in CT usage, patient weight, CTDIvol and DLP across the participating sites.


Assuntos
COVID-19 , Brasil , Humanos , Doses de Radiação , SARS-CoV-2 , Tomografia Computadorizada por Raios X
17.
Acad Radiol ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34836775

RESUMO

Concerns over need for CT radiation dose optimization and reduction led to improved scanner efficiency and introduction of several reconstruction techniques and image processing-based software. The latest technologies use artificial intelligence (AI) for CT dose optimization and image quality improvement. While CT dose optimization has and can benefit from AI, variations in scanner technologies, reconstruction methods, and scan protocols can lead to substantial variations in radiation doses and image quality across and within different scanners. These variations in turn can influence performance of AI algorithms being deployed for tasks such as detection, segmentation, characterization, and quantification. We review the complex relationship between AI and CT radiation dose.

18.
Acad Radiol ; 28(7): 972-979, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34217490

RESUMO

RATIONALE AND OBJECTIVES: We aimed to assess relationship between single-click, whole heart radiomics from low-dose computed tomography (LDCT) for lung cancer screening with coronary artery calcification and stenosis. MATERIALS AND METHODS: The institutional review board-approved, retrospective study included all 106 patients (68 men, 38 women, mean age 64 ± 7 years) who underwent both LDCT for lung cancer screening and had calcium scoring and coronary computed tomography angiography in our institution. We recorded the clinical variables including patients' demographics, smoking history, family history, and lipid profiles. Coronary calcium scores and grading of coronary stenosis were recorded from the radiology information system. We calculated the multiethnic scores for atherosclerosis risk scores to obtain 10-year coronary heart disease (MESA 10-Y CHD) risk of cardiovascular disease for all patients. Deidentified LDCT exams were exported to a Radiomics prototype for automatic heart segmentation, and derivation of radiomics. Data were analyzed using multiple logistic regression and kernel Fisher discriminant analyses. RESULTS: Whole heart radiomics were better than the clinical variables for differentiating subjects with different Agatston scores (≤400 and >400) (area under the curve [AUC] 0.92 vs 0.69). Prediction of coronary stenosis and MESA 10-Y CHD risk was better on whole heart radiomics (AUC:0.86-0.87) than with clinical variables (AUC:0.69-0.79). Addition of clinical variables or visual assessment of coronary calcification from LDCT to whole heart radiomics resulted in a modest change in the AUC. CONCLUSION: Single-click, whole heart radiomics obtained from LDCT for lung cancer screening can differentiate patients with different Agatston and MESA risk scores for cardiovascular diseases.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Neoplasias Pulmonares , Calcificação Vascular , Idoso , Constrição Patológica , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/epidemiologia , Vasos Coronários , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/epidemiologia
19.
Eur Radiol ; 31(12): 9664-9674, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34089072

RESUMO

OBJECTIVE: Assess if deep learning-based artificial intelligence (AI) algorithm improves reader performance for lung cancer detection on chest X-rays (CXRs). METHODS: This reader study included 173 images from cancer-positive patients (n = 98) and 346 images from cancer-negative patients (n = 196) selected from National Lung Screening Trial (NLST). Eight readers, including three radiology residents, and five board-certified radiologists, participated in the observer performance test. AI algorithm provided image-level probability of pulmonary nodule or mass on CXRs and a heatmap of detected lesions. Reader performance was compared with AUC, sensitivity, specificity, false-positives per image (FPPI), and rates of chest CT recommendations. RESULTS: With AI, the average sensitivity of readers for the detection of visible lung cancer increased for residents, but was similar for radiologists compared to that without AI (0.61 [95% CI, 0.55-0.67] vs. 0.72 [95% CI, 0.66-0.77], p = 0.016 for residents, and 0.76 [95% CI, 0.72-0.81] vs. 0.76 [95% CI, 0.72-0.81, p = 1.00 for radiologists), while false-positive findings per image (FPPI) was similar for residents, but decreased for radiologists (0.15 [95% CI, 0.11-0.18] vs. 0.12 [95% CI, 0.09-0.16], p = 0.13 for residents, and 0.24 [95% CI, 0.20-0.29] vs. 0.17 [95% CI, 0.13-0.20], p < 0.001 for radiologists). With AI, the average rate of chest CT recommendation in patients positive for visible cancer increased for residents, but was similar for radiologists (54.7% [95% CI, 48.2-61.2%] vs. 70.2% [95% CI, 64.2-76.2%], p < 0.001 for residents and 72.5% [95% CI, 68.0-77.1%] vs. 73.9% [95% CI, 69.4-78.3%], p = 0.68 for radiologists), while that in cancer-negative patients was similar for residents, but decreased for radiologists (11.2% [95% CI, 9.6-13.1%] vs. 9.8% [95% CI, 8.0-11.6%], p = 0.32 for residents and 16.4% [95% CI, 14.7-18.2%] vs. 11.7% [95% CI, 10.2-13.3%], p < 0.001 for radiologists). CONCLUSIONS: AI algorithm can enhance the performance of readers for the detection of lung cancers on chest radiographs when used as second reader. KEY POINTS: • Reader study in the NLST dataset shows that AI algorithm had sensitivity benefit for residents and specificity benefit for radiologists for the detection of visible lung cancer. • With AI, radiology residents were able to recommend more chest CT examinations (54.7% vs 70.2%, p < 0.001) for patients with visible lung cancer. • With AI, radiologists recommended significantly less proportion of unnecessary chest CT examinations (16.4% vs. 11.7%, p < 0.001) in cancer-negative patients.


Assuntos
Inteligência Artificial , Neoplasias Pulmonares , Algoritmos , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador , Radiografia , Radiografia Torácica , Sensibilidade e Especificidade
20.
J Am Coll Radiol ; 18(10): 1394-1404, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34115990

RESUMO

OBJECTIVE: Kidney stones are common, tend to recur, and afflict a young population. Despite evidence and recommendations, adoption of reduced-radiation dose CT (RDCT) for kidney stone CT (KSCT) is slow. We sought to design and test an intervention to improve adoption of RDCT protocols for KSCT using a randomized facility-based intervention. METHODS: Facilities contributing at least 40 KSCTs to the American College of Radiology dose index registry (DIR) during calendar year 2015 were randomized to intervention or control groups. The Dose Optimization for Stone Evaluation intervention included customized CME modules, personalized consultation, and protocol recommendations for RDCT. Dose length product (DLP) of all KSCTs was recorded at baseline (2015) and compared with 2017, 2018, and 2019. Change in mean DLP was compared between facilities that participated (intervened-on), facilities randomized to intervention that did not participate (intervened-off), and control facilities. Difference-in-difference between intervened-on and control facilities is reported before and after intervention. RESULTS: Of 314 eligible facilities, 155 were randomized to intervention and 159 to control. There were 25 intervened-on facilities, 71 intervened-off facilities, and 96 control facilities. From 2015 to 2017, there was a drop of 110 mGy ∙ cm (a 16% reduction) in the mean DLP in the intervened-on group, which was significantly lower compared with the control group (P < .05). The proportion of RDCTs increased for each year in the intervened-on group relative to the other groups for all 3 years (P < .01). DISCUSSION: The Dose Optimization for Stone Evaluation intervention resulted in a significant (P < .05) and persistent reduction in mean radiation doses for engaged facilities performing KSCTs.


Assuntos
Redução da Medicação , Cálculos Renais , Humanos , Rim , Cálculos Renais/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA