Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38479486

RESUMO

The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung's disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? Here, we review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.

2.
Genesis ; 59(11): e23459, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34713546

RESUMO

Neural tube defects (NTDs) are a classic example of preventable birth defects for which there is a proven-effective intervention, folic acid (FA); however, further methods of prevention remain unrealized. In the decades following implementation of FA nutritional fortification programs throughout at least 87 nations, it has become apparent that not all NTDs can be prevented by FA. In the United States, FA fortification only reduced NTD rates by 28-35% (Williams et al., 2015). As such, it is imperative that further work is performed to understand the risk factors associated with NTDs and their underlying mechanisms so that alternative prevention strategies can be developed. However, this is complicated by the sheer number of genes associated with neural tube development, the heterogeneity of observable phenotypes in human cases, the rareness of the disease, and the myriad of environmental factors associated with NTD risk. Given the complex genetic architecture underlying NTD pathology and the way in which that architecture interacts dynamically with environmental factors, further prevention initiatives will undoubtedly require precision medicine strategies that utilize the power of human genomics and modern tools for assessing genetic risk factors. Herein, we review recent advances in genomic strategies for discovering genetic variants associated with these defects, and new ways in which biological models, such as mice and cell culture-derived organoids, are leveraged to assess mechanistic functionality, the way these variants interact with other genetic or environmental factors, and their ultimate contribution to human NTD risk.


Assuntos
Genômica/métodos , Defeitos do Tubo Neural/genética , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Mutação , Defeitos do Tubo Neural/metabolismo
3.
J Neurosci ; 36(2): 561-76, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758845

RESUMO

The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT: In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios Motores/patologia , Proteínas Munc18/deficiência , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Medula Espinal/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Morte Celular/genética , Receptor DCC , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Guanilato Quinases/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Munc18/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Transporte Proteico/genética , Receptor trkB/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/genética , Medula Espinal/embriologia , Sintaxina 1/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
J Neurosci ; 35(15): 6028-37, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878276

RESUMO

The intracellular transcriptional milieu wields considerable influence over the induction of neuronal identity. The transcription factor Ptf1a has been proposed to act as an identity "switch" between developmentally related precursors in the spinal cord (Glasgow et al., 2005; Huang et al., 2008), retina (Fujitani et al., 2006; Dullin et al., 2007; Nakhai et al., 2007; Lelièvre et al., 2011), and cerebellum (Hoshino et al., 2005; Pascual et al., 2007; Yamada et al., 2014), where it promotes an inhibitory over an excitatory neuronal identity. In this study, we investigate the potency of Ptf1a to cell autonomously confer a specific neuronal identity outside of its endogenous environment, using mouse in utero electroporation and a conditional genetic strategy to misexpress Ptf1a exclusively in developing cortical pyramidal cells. Transcriptome profiling of Ptf1a-misexpressing cells using RNA-seq reveals that Ptf1a significantly alters pyramidal cell gene expression, upregulating numerous Ptf1a-dependent inhibitory interneuron markers and ultimately generating a gene expression profile that resembles the transcriptomes of both Ptf1a-expressing spinal interneurons and endogenous cortical interneurons. Using RNA-seq and in situ hybridization analyses, we also show that Ptf1a induces expression of the peptidergic neurotransmitter nociceptin, while minimally affecting the expression of genes linked to other neurotransmitter systems. Moreover, Ptf1a alters neuronal morphology, inducing the radial redistribution and branching of neurites in cortical pyramidal cells. Thus Ptf1a is sufficient, even in a dramatically different neuronal precursor, to cell autonomously promote characteristics of an inhibitory peptidergic identity, providing the first example of a single transcription factor that can direct an inhibitory peptidergic fate.


Assuntos
Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Biologia Computacional , Eletroporação , Embrião de Mamíferos , Proteínas do Olho/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Estatísticas não Paramétricas , Fatores de Transcrição/genética , Tubulina (Proteína)/metabolismo
5.
Front Neural Circuits ; 7: 150, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24093008

RESUMO

During perinatal development, corticospinal tract (CST) projections into the spinal cord help refine spinal circuitry. Although the normal developmental processes that are controlled by the arrival of corticospinal input are becoming clear, little is known about how perinatal cortical damage impacts specific aspects of spinal circuit development, particularly the inhibitory microcircuitry that regulates spinal reflex circuits. In this study, we sought to determine how ischemic cortical damage impacts the synaptic attributes of a well-characterized population of inhibitory, GABAergic interneurons, called GABApre neurons, which modulates the efficiency of proprioceptive sensory terminals in the sensorimotor reflex circuit. We found that putative GABApre interneurons receive CST input and, using an established mouse model of perinatal stroke, that cortical ischemic injury results in a reduction of CST density within the intermediate region of the spinal cord, where these interneurons reside. Importantly, CST alterations were restricted to the side contralateral to the injury. Within the synaptic terminals of the GABApre interneurons, we observed a dramatic upregulation of the 65-isoform of the GABA synthetic enzyme glutamic acid decarboxylase (GAD65). In accordance with the CST density reduction, GAD65 was elevated on the side of the spinal cord contralateral to cortical injury. This effect was not seen for other GABApre synaptic markers or in animals that received sham surgery. Our data reveal a novel effect of perinatal stroke that involves severe deficits in the architecture of a descending spinal pathway, which in turn appear to promote molecular alterations in a specific spinal GABAergic circuit.


Assuntos
Glutamato Descarboxilase/metabolismo , Interneurônios/metabolismo , Tratos Piramidais/lesões , Medula Espinal/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Isquemia Encefálica/metabolismo , Glutamato Descarboxilase/genética , Camundongos , Sinapses/metabolismo
6.
Proc Natl Acad Sci U S A ; 106(32): 13588-93, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19651609

RESUMO

Spinal motor neurons are specified to innervate different muscle targets through combinatorial programs of transcription factor expression. Whether transcriptional programs also establish finer aspects of motor neuron subtype identity, notably the prominent functional distinction between alpha and gamma motor neurons, remains unclear. In this study, we identify DNA binding proteins with complementary expression profiles in alpha and gamma motor neurons, providing evidence for molecular distinctions in these two motor neuron subtypes. The transcription factor Err3 is expressed at high levels in gamma but not alpha motor neurons, whereas the neuronal DNA binding protein NeuN marks alpha but not gamma motor neurons. Signals from muscle spindles are needed to support the differentiation of Err3(on)/NeuN(off) presumptive gamma motor neurons, whereas direct proprioceptive sensory input to a motor neuron pool is apparently dispensable. Together, these findings provide evidence that transcriptional programs define functionally distinct motor neuron subpopulations, even within anatomically defined motor pools.


Assuntos
Neurônios Motores/metabolismo , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biomarcadores/metabolismo , Camundongos , Neurônios Motores/enzimologia , Neurônios Motores/patologia , Fusos Musculares/metabolismo , Fusos Musculares/patologia , Neuraminidase/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Fenótipo , Propriocepção
7.
Curr Biol ; 12(23): 1971-81, 2002 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-12477385

RESUMO

BACKGROUND: The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to distinct cortical domains of mRNAs that function as cytoplasmic determinants. A conserved machinery for mRNA localization and nuclear positioning involving cytoplasmic Dynein has been postulated; however, the precise role of plus- and minus end-directed microtubule-based transport in axis formation is not yet understood. RESULTS: Here, we show that mRNA localization and nuclear positioning at mid-oogenesis depend on two motor proteins, cytoplasmic Dynein and Kinesin I. Both of these microtubule motors cooperate in the polar transport of bicoid and gurken mRNAs to their respective cortical domains. In contrast, Kinesin I-mediated transport of oskar to the posterior pole appears to be independent of Dynein. Beside their roles in RNA transport, both motors are involved in nuclear positioning and in exocytosis of Gurken protein. Dynein-Dynactin complexes accumulate at two sites within the oocyte: around the nucleus in a microtubule-independent manner and at the posterior pole through Kinesin-mediated transport. CONCLUSION: The microtubule motors cytoplasmic Dynein and Kinesin I, by driving transport to opposing microtubule ends, function in concert to establish intracellular polarity within the Drosophila oocyte. Furthermore, Kinesin-dependent localization of Dynein suggests that both motors are components of the same complex and therefore might cooperate in recycling each other to the opposite microtubule pole.


Assuntos
Drosophila/fisiologia , Dineínas/fisiologia , Cinesinas/fisiologia , Oócitos/fisiologia , Animais , Núcleo Celular/fisiologia , Polaridade Celular , Proteínas de Drosophila/genética , Dineínas/genética , Exocitose , Feminino , Hibridização In Situ , Cinesinas/genética , Microtúbulos/fisiologia , Mutagênese , Oócitos/citologia , RNA Mensageiro/genética , Transcrição Gênica
8.
Nat Cell Biol ; 4(12): 937-44, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12447392

RESUMO

Dorsal closure is a morphogenetic process involving the coordinated convergence of two epithelial sheets to enclose the Drosophila melanogaster embryo. Specialized populations of cells at the edges of each epithelial sheet, the dorsal-most epidermal cells, emit actin-based processes that are essential for the proper enclosure of the embryo. Here we show that actin dynamics at the leading edge is preceded by a planar polarization of the dorsal-most epidermal cells associated with a reorganization of the cytoskeleton. An important consequence of this planar polarization is the formation of actin-nucleating centres at the leading edge, which are important in the dynamics of actin. We show that Wingless (Wg) signalling and Jun amino-terminal kinase (JNK) signalling have overlapping but different roles in these events.


Assuntos
Actinas/fisiologia , Polaridade Celular/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Células Epidérmicas , Epiderme/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno , Transdução de Sinais/fisiologia , Actinas/genética , Animais , Polaridade Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , MAP Quinase Quinase 4 , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Morfogênese/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/genética , Proteína Wnt1
9.
J Cell Sci ; 115(Pt 11): 2257-64, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12006610

RESUMO

Asymmetric cell division can produce daughter cells with different developmental fates and is often accompanied by a difference in cell size. A number of recent genetic and in vivo imaging studies in Drosophila and Caenorhabditis elegans have begun to elucidate the mechanisms underlying the rearrangements of the cytoskeleton that result in eccentrically positioned cleavage planes. As a result, we are starting to gain an insight into the complex nature of the signals controlling cytoskeletal dynamics in the dividing cell. In this commentary we discuss recent findings on how the mitotic spindle is positioned and on cleavage site induction and place them in the context of cell size asymmetry in different model organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Células Eucarióticas/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Dineínas/metabolismo , Células Eucarióticas/citologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA