Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 17(6)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36044885

RESUMO

Nanoconfinement within flexible interfaces is a key step towards exploiting confinement effects in several biological and technological systems wherein flexible 2D materials are frequently utilized but are arduous to prepare. Hitherto unreported, the synthesis of 2D hydrogel nanosheets (HNSs) using a template- and catalyst-free process is developed representing a fertile ground for fundamental structure-property investigations. In due course of time, nucleating folds propagating along the edges trigger co-operative deformations of HNS generating regions of nanoconfinement within trapped water islands. These severely constricting surfaces force water molecules to pack within the nanoscale regime of HNS almost parallel to the surface bringing about phase transition into puckered rhombic ice with AA and AB Bernal stacking pattern, which was mostly restricted to molecular dynamics studies so far. Interestingly, under high lateral pressure and spatial inhomogeneity within nanoscale confinement, bilayer rhombic ice structures were formed with an in-plane lattice spacing of 0.31 nm. In this work, a systematic exploration of rhombic ice formation within HNS has been delineated using high-resolution transmission electron microscopy, and its ultrathin morphology was examined using atomic force microscopy. Scanning electron microscopy images revealed high porosity while mechanical testing presented young's modulus of 155 kPa with ∼84% deformation, whereas contact angle suggested high hydrophilicity. The combinations of nanosheets, porosity, nanoconfinement, hydrophilicity, and mechanical strength, motivated us to explore their application as a scaffold for cartilage regeneration, by inducing chondrogenesis of human Wharton Jelly derived mesenchymal stem cells. HNS promoted the formation of cell aggregates giving higher number of spheroid formation and a marked expression of chondrogenic markers (ColI, ColII, ColX, ACAN and S-100), thereby providing some cues for guiding chondrogenic differentiation.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Diferenciação Celular , Células Cultivadas , Condrogênese , Humanos , Hidrogéis/química , Gelo
2.
Biomed Mater ; 17(4)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35447615

RESUMO

Site-specific drug delivery has the potential to reduce drug dosage by 3- to 5-folds. Given the propensity of drugs used in the treatment of tuberculosis and cancers, the increased drug dosages via oral ingestion for several months to a few years of medication is often detrimental to the health of patients. In this study, the sustained delivery of drugs with multiscale structured novel Neovius lattices was achieved. 3D Neovius open cell lattices (NOCL) with porosities of 40%, 45%, and 50% were fabricated layer-by-layer on the laser bed fusion process. Micron-sized Ti6Al4V ELI powder was used for 3D printing. The Young's modulus achieved from the novel Neovius lattices were in the range of 1.2-1.6 GPa, which is comparable to human cortical bone and helps to improve implant failure due to the stress shielding effect. To provide sustained drug delivery, nanotubes (NTs) were fabricated on NOCLs via high-voltage anodization. The osteogenic agent icariin was loaded onto the NOCL-NT samples and their release profiles were studied for 7 d. A significantly steady and slow release rate of 0.05% per hour of the drug was achieved using NOCL-NT. In addition, the initial burst release of NOCL-NT was 4 fold lower than that of the open-cell lattices without NTs. Cellular studies using MG63 human osteoblast-like cells were performed to determine their biocompatibility and osteogenesis which were analyzed using Calcein AM staining and Alamar Blue after 1, 5, and 7 d. 3D printed NOCL samples with NTs and with Icariin loaded NTs demonstrated a significant increase in cell proliferation as compared to as printed NOCL samples.


Assuntos
Ligas , Nanotubos , Humanos , Osteogênese , Porosidade , Impressão Tridimensional , Titânio/química
3.
Macromol Biosci ; 22(5): e2100454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35102705

RESUMO

Micropatterned polymer brushes have attracted attention in several biomedical areas, i.e., tissue engineering, protein microarray, biosensors, etc., for precise arrangement of biomolecules. Herein, a facile and scalable approach is reported to create microtextured polymer brushes with the ability to generate different type of protein patterns. Nanosecond fiber laser is exploited to generate micropatterns on poly(poly(ethylene glycol) methacrylate) (polyPEGMA) brush modified Ti alloy substrate. Surface initiated atom transfer radical polymerization is employed to grow PolyPEGMA brush (11-87 nm thick) on Ti alloy surface immobilized with initiator having an initiator density (σ*) of 1.5 initiators per nm2 . Polymer brushes are then selectively laser ablated and their presence on nontextured area is confirmed by atomic force microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy. Spatial orientation of biomolecules is first achieved by nonspecific protein adsorption on areas ablated by the laser, via physisorption. Further, patterned brushes of polyPEGMA are modified to activated ester that gives rise to protein conjugation specifically on nonlaser ablated brush areas. Moreover, the laser ablated brush modified patterned template is also successfully utilized for generating alternate patterns of bacteria. This promising technique can be further extended to create interesting patterns of several biomolecules which are of great interest to biomedical research community.


Assuntos
Lasers , Polímeros , Ligas , Microscopia de Força Atômica , Polimerização , Polímeros/química , Propriedades de Superfície
4.
Spine J ; 19(1): 56-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730456

RESUMO

BACKGROUND CONTEXT: Spinal deformities are very challenging to treat and have a great risk of neurologic complications because of hardware placement during corrective surgery. Various techniques have been introduced to ensure safe and accurate placement of pedicle screws. Patient-specific screw guides with predrawn and prevalidated trajectory seem to be an attractive option. PURPOSE: We have focused on developing three-dimensional (3D) printing technique for complex spinal deformities in India. This study also aimed to compare the placement of pedicle screw with 3D printing and freehand technique. STUDY DESIGN/SETTINGS: This is a retrospective comparative clinical study in an academic institutional setting. PATIENT SAMPLE: A total of 20 patients were enrolled during the study: 10 were operated on with the help of 3D printing (Group 1) and 10 were operated on with freehand technique (Group 2). Group 1 included six patients with congenital scoliosis, three patients with adolescent idiopathic scoliosis (AIS), and one patient with post-tubercular kyphosis, and Group 2 included five patients with congenital scoliosis, four patients with AIS, and one patient with post-tubercular kyphosis. OUTCOME MEASURES: Primary outcomes were measured in terms of screw violation, and secondary outcomes were measured in terms of surgical time, blood loss, radiation exposure (number of shoots required), and complications. MATERIALS AND METHODS: MIMICS Base v18.0 software was used for 3D reconstruction from computed tomography scan images of all the patients. 3-Matic software was used to create a drill guide. A 3D printer from Stratasys Mojo with ABS P430 model material cartilage (a thermoplastic material) was used for the printing of the vertebra model and jigs. A two-sample test of proportion was used to compare correctly and wrongly placed pedicle screws with 3D printing and freehand technique. t Test with equal variance was used for operating surgical time and blood loss. RESULTS: No superior or inferior screw violation was observed in any of our patients in either group. We found a significant difference (p=.03) between the two groups regarding perfect screw placement in favor of 3D printing. There were 13 Grade 2 medial perforations in the freehand group and 3 in the 3D printing group. There was no Grade 3 medial perforation in either group. Six Grade 2 lateral perforations in the freehand group and seven in the 3D printing group were observed. Three Grade 3 lateral perforations in the freehand group and two in 3D printing group were observed. Analysis showed a statistically significant (p=.005) medial violation in the freehand group. Surgical time was significantly less (p=.03) in the 3D printing group compared with the freehand group. Mean blood loss was higher in the freehand group but was not statistically significant (p=.3) in the 3D printing group. Fluoroscopic shots required were less in number in the 3D printing group compared with the freehand group. There was no neurologic deficit in any of the patients in the two groups. CONCLUSIONS: In our study, focusing on spinal deformities with statistically significant higher rates of accurate screw positioning and higher numbers of inserted screws with 3D printing was possible because of enhanced safety, particularly at apical levels. As such, spinal deformities are difficult to treat worldwide. In India, these deformities are often neglected and present at a very late and a much more deformed state when their treatment becomes even more challenging. Developing these patient-specific drill templates will enable an average spine surgeon to treat these patients with much ease and safety.


Assuntos
Modelagem Computacional Específica para o Paciente , Parafusos Pediculares/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Impressão Tridimensional , Curvaturas da Coluna Vertebral/cirurgia , Fusão Vertebral/métodos , Adolescente , Feminino , Humanos , Masculino , Curvaturas da Coluna Vertebral/diagnóstico por imagem , Fusão Vertebral/efeitos adversos , Fusão Vertebral/instrumentação
5.
Indian J Microbiol ; 58(3): 381-392, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30013283

RESUMO

A limit of detection of 200 CFU/mL of Salmonella typhi spiked in various sample matrices were achieved in 30 min. The sample matrices were raw/unprocessed milk, commercially available milk, juice from packed bottles, fresh juice from carts, potable water, turbid water and calf serum. The complete protocol comprised of three steps: (a) cell lysis (b) nucleic acid amplification and (c) an in situ optical detection. The cell lysis was carried out using a simple heating based protocol, while the loop-mediated isothermal amplification of DNA was carried out by an in-house designed and fabricated system. The developed system consists of an aluminum block fitted with two cartridge heaters along with a thermocouple. The system was coupled to a light source and spectrometer for a simultaneous in situ detection. Primers specific for STY2879 gene were used to amplify the nucleic acid sequence, isolated from S. typhi cells. The protocol involves 15 min of cell lysis and DNA isolation followed by 15 min for isothermal amplification and simultaneous detection. No cross-reactivity of the primers were observed at 106 CFU/mL of Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Salmonella paratyphi A, Pseudomonas aeruginosa, Bacillus cereus, Lysteria monocytogenes, Clostridium botulinum, Staphylococcus aureus and Salmonella havana. In addition, the system was able to detect S. typhi of 200 CFU/mL in a concoction of 106 CFU/mL of E. coli, 106 CFU/mL of V. cholerae, and 106 CFU/mL of hepatocyte-derived cellular carcinoma HUH7 cells. The proposed rapid diagnostic system shows a promising future in the field of food and medical diagnostics.

6.
Prog Orthod ; 18(1): 42, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29177754

RESUMO

BACKGROUND: The temporary anchorage devices (TADs) which include miniscrew implants (MSIs) have evolved as useful armamentarium in the management of severe malocclusions and assist in complex tooth movements. Although a multitude of factors is responsible for the primary and secondary stability of miniscrew implants, contemporary research highlights the importance of biological interface of MSI with bone and soft tissue in augmenting the success of implants. The inflammation and remodeling associated with MSI insertion or loading are reflected through biomarkers in peri-miniscrew implant crevicular fluid (PMICF) which is analogous to the gingival crevicular fluid. Analysis of biomarkers in PMICF provides indicators of inflammation at the implant site, osteoclast differentiation and activation, bone resorption activity and bone turnover. The PMICF for assessment of these biomarkers can be collected non-invasively via paper strips, periopaper or micro capillary pipettes and analysed by enzyme-linked immunosorbent assay (ELISA) or immunoassays. The markers and mediators of inflammation have been previously studied in relation to orthodontic tooth movement include interleukins (IL-1ß, IL-2, IL-6 and IL-8), growth factors and other proteins like tumour necrosis factor (TNF-α), receptor activator of nuclear factor kappa-B ligand (RANKL), chondroitin sulphate (CS) and osteoprotegerin (OPG). Studies have indicated that successful and failed MSIs have different concentrations of biomarkers in PMICF. However, there is a lack of comprehensive information on this aspect of MSIs. Therefore, a detailed review was conducted on the subject. RESULTS: A literature search revealed six relevant studies: two on IL-1ß; one on IL-2, IL-6 and IL-8; one on TNF-α; one on CS; and one on RANKL/OPG ratio. One study showed an increase in IL-1ß levels upon MSI loading, peak in 24 hours (h), followed by a decrease in 21 days to reach baseline in 300 days. A 6.87% decrease in IL-2 levels was seen before loading and a 5.97% increase post-loading. IL-8 showed a 6.31% increase after loading and IL-6 increased by 3.08% before MSI loading and 15.06% after loading. RANKL/OPG ratio increased in loaded compared to unloaded MSIs. CONCLUSIONS: Cytokines (mainly ILs and TNF-α) and RANKL/OPG ratio showed alteration in PMICF levels upon loading of MSIs as direct or indirect anchorage.


Assuntos
Biomarcadores/metabolismo , Remodelação Óssea/fisiologia , Parafusos Ósseos , Líquido do Sulco Gengival/metabolismo , Inflamação/metabolismo , Procedimentos de Ancoragem Ortodôntica/instrumentação , Técnicas de Movimentação Dentária/instrumentação , Sulfatos de Condroitina/metabolismo , Citocinas/metabolismo , Humanos , Interleucinas/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA