Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101568

RESUMO

Intermediary metabolites and flux through various pathways have emerged as key determinants of post-translational modifications. Independently, dynamic fluctuations in their concentrations are known to drive cellular energetics in a bi-directional manner. Notably, intracellular fatty acid pools that drastically change during fed and fasted states act as precursors for both ATP production and fatty acylation of proteins. Protein fatty acylation is well regarded for its role in regulating structure and functions of diverse proteins; however, the effect of intracellular concentrations of fatty acids on protein modification is less understood. In this regard, we unequivocally demonstrate that metabolic contexts, viz. fed and fasted states, dictate the extent of global fatty acylation. Moreover, we show that presence or absence of glucose that influences cellular and mitochondrial uptake/utilization of fatty acids and affects palmitoylation and oleoylation, which is consistent with their intracellular abundance in fed and fasted states. Employing complementary approaches including click-chemistry, lipidomics, and imaging, we show the top-down control of cellular metabolic state. Importantly, our results establish the crucial role of mitochondria and retrograde signaling components like SIRT4, AMPK, and mTOR in orchestrating protein fatty acylation at a whole cell level. Specifically, pharmacogenetic perturbations that alter either mitochondrial functions and/or retrograde signaling affect protein fatty acylation. Besides illustrating the cross-talk between carbohydrate and lipid metabolism in mediating bulk post-translational modification, our findings also highlight the involvement of mitochondrial energetics.


Assuntos
Acilação , Ácidos Graxos , Metabolismo dos Lipídeos , Processamento de Proteína Pós-Traducional , Proteínas , Trifosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Química Click , Jejum/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Lipidômica , Lipoilação , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas/química , Proteínas/metabolismo , Sirtuínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
mBio ; 13(3): e0383621, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35471080

RESUMO

Mycobacterium tuberculosis encodes ~200 transcription factors that modulate gene expression under different microenvironments in the host. Even though high-throughput chromatin immunoprecipitation sequencing and transcriptome sequencing (RNA-seq) studies have identified the regulatory network for ~80% of transcription factors, many transcription factors remain uncharacterized. EmbR is one such transcription factor whose in vivo regulon and biological function are yet to be elucidated. Previous in vitro studies suggested that phosphorylation of EmbR by PknH upregulates the embCAB operon. Using a gene replacement mutant of embR, we investigated its role in modulating cellular morphology, antibiotic resistance, and survival in the host. Contrary to the prevailing hypothesis, under normal growth conditions, EmbR is neither phosphorylated nor impacted by ethambutol resistance through the regulation of the embCAB operon. The embR deletion mutant displayed attenuated M. tuberculosis survival in vivo. RNA-seq analysis suggested that EmbR regulates operons involved in the secretion pathway, lipid metabolism, virulence, and hypoxia, including well-known hypoxia-inducible genes devS and hspX. Lipidome analysis revealed that EmbR modulates levels of all lysophospholipids, several phospholipids, and M. tuberculosis-specific lipids, which is more pronounced under hypoxic conditions. We found that the EmbR mutant is hypersusceptible to hypoxic stress, and RNA sequencing performed under hypoxic conditions indicated that EmbR majorly regulates genes involved in response to acidic pH, hypoxia, and fatty acid metabolism. We observed condition-specific phosphorylation of EmbR, which contributes to EmbR-mediated transcription of several essential genes, ensuring enhanced survival. Collectively, the study establishes EmbR as a key modulator of hypoxic response that facilitates mycobacterial survival in the host. IMPORTANCE Mycobacterium tuberculosis modulates its transcriptional machinery in response to dynamic microenvironments encountered within the host. In this study, we identified that EmbR, a transcription factor, plays important roles in modulating cellular morphology, antibiotic resistance, and survival in the host. We found that EmbR undergoes condition-specific phosphorylation for its activation. Together, the study establishes a key role of EmbR as a transcriptional activator of genes belonging to multiple pathways, viz., virulence, secretion, or polyketide synthesis, that aid in mycobacterial survival during hypoxia and within the host.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Fatores de Transcrição , Fatores de Virulência , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Hipóxia , Mycobacterium tuberculosis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Chem Sci ; 12(39): 12939-12949, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34745524

RESUMO

Persulfides and polysulfides, collectively known as the sulfane sulfur pool along with hydrogen sulfide (H2S), play a central role in cellular physiology and disease. Exogenously enhancing these species in cells is an emerging therapeutic paradigm for mitigating oxidative stress and inflammation that are associated with several diseases. In this study, we present a unique approach of using the cell's own enzyme machinery coupled with an array of artificial substrates to enhance the cellular sulfane sulfur pool. We report the synthesis and validation of artificial/unnatural substrates specific for 3-mercaptopyruvate sulfurtransferase (3-MST), an important enzyme that contributes to sulfur trafficking in cells. We demonstrate that these artificial substrates generate persulfides in vitro as well as mediate sulfur transfer to low molecular weight thiols and to cysteine-containing proteins. A nearly 100-fold difference in the rates of H2S production for the various substrates is observed supporting the tunability of persulfide generation by the 3-MST enzyme/artificial substrate system. Next, we show that the substrate 1a permeates cells and is selectively turned over by 3-MST to generate 3-MST-persulfide, which protects against reactive oxygen species-induced lethality. Lastly, in a mouse model, 1a is found to significantly mitigate neuroinflammation in the brain tissue. Together, the approach that we have developed allows for the on-demand generation of persulfides in vitro and in vivo using a range of shelf-stable, artificial substrates of 3-MST, while opening up possibilities of harnessing these molecules for therapeutic applications.

4.
ACS Chem Biol ; 16(12): 2757-2765, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34647453

RESUMO

Phagocytosis is an important physiological process, which, in higher organisms, is a means of fighting infections and clearing cellular debris. During phagocytosis, detrimental foreign particles (e.g. pathogens and apoptotic cells) are engulfed by phagocytes (e.g. macrophages), enclosed in membrane-bound vesicles called phagosomes, and transported to the lysosome for eventual detoxification. During this well-choreographed process, the nascent phagosome (also called early phagosome, EP) undergoes a series of spatiotemporally regulated changes in its protein and lipid composition and matures into a late phagosome (LP), which subsequently fuses with the lysosomal membrane to form the phagolysosome. While several elegant proteomic studies have identified the role of unique proteins during phagosomal maturation, the corresponding lipidomic studies are sparse. Recently, we reported a comparative lipidomic analysis between EPs and LPs and showed that ceramides are enriched on the LPs. Further, we found that this ceramide accumulation on LPs was orchestrated by ceramide synthase 2, inhibition of which hampers phagosomal maturation. Following up on this study, here, using biochemical assays, we first show that the increased ceramidase activity on EPs also significantly contributes to the accumulation of ceramides on LPs. Next, leveraging lipidomics, we show that de novo ceramide synthesis does not significantly contribute to the ceramide accumulation on LPs, while concomitant to increased ceramides, glucosylceramides are substantially elevated on LPs. We validate this interesting finding using biochemical assays and show that LPs indeed have heightened glucosylceramide synthase activity. Taken together, our studies provide interesting insights and possible new roles of sphingolipid metabolism during phagosomal maturation.


Assuntos
Lisossomos/metabolismo , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Glucosilceramidas/metabolismo , Macrófagos/metabolismo , Fagócitos/metabolismo , Fagocitose/efeitos dos fármacos , Fagossomos , Proteômica , Transdução de Sinais
5.
Cell Chem Biol ; 28(8): 1169-1179.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33571455

RESUMO

In humans, lysophosphatidylserines (lyso-PSs) are potent lipid regulators of important immunological processes. Given their structural diversity and commercial paucity, here we report the synthesis of methyl esters of lyso-PS (Me-lyso-PSs) containing medium- to very-long-chain (VLC) lipid tails. We show that Me-lyso-PSs are excellent substrates for the lyso-PS lipase ABHD12, and that these synthetic lipids are acted upon by cellular carboxylesterases to produce lyso-PSs. Next, in macrophages we demonstrate that VLC lyso-PSs orchestrate pro-inflammatory responses and in turn neuroinflammation via a Toll-like receptor 2 (TLR2)-dependent pathway. We also show that long-chain (LC) lyso-PSs robustly induce intracellular cyclic AMP production, cytosolic calcium influx, and phosphorylation of the nodal extracellular signal-regulated kinase to regulate macrophage activation via a TLR2-independent pathway. Finally, we report that LC lyso-PSs potently elicit histamine release during the mast cell degranulation process, and that ABHD12 is the major lyso-PS lipase in these immune cells.


Assuntos
Ácidos Graxos/imunologia , Lisofosfolipídeos/imunologia , Animais , Células Cultivadas , Ácidos Graxos/química , Feminino , Histamina/imunologia , Humanos , Lipídeos/química , Lipídeos/imunologia , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Macrófagos/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Monoacilglicerol Lipases/metabolismo , Especificidade por Substrato
6.
J Membr Biol ; 253(5): 381-397, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32767057

RESUMO

Lysophospholipids are potent hormone-like signalling biological lipids that regulate many important biological processes in mammals (including humans). Lysophosphatidic acid and sphingosine-1-phosphate represent the best studied examples for this lipid class, and their metabolic enzymes and/or cognate receptors are currently under clinical investigation for treatment of various neurological and autoimmune diseases in humans. Over the past two decades, the lysophsophatidylserines (lyso-PSs) have emerged as yet another biologically important lysophospholipid, and deregulation in its metabolism has been linked to various human pathophysiological conditions. Despite its recent emergence, an exhaustive review summarizing recent advances on lyso-PSs and the biological pathways that this bioactive lysophospholipid regulates has been lacking. To address this, here, we summarize studies that led to the discovery of lyso-PS as a potent signalling biomolecule, and discuss the structure, its detection in biological systems, and the biodistribution of this lysophospholipid in various mammalian systems. Further, we describe in detail the enzymatic pathways that are involved in the biosynthesis and degradation of this lipid and the putative lyso-PS receptors reported in the literature. Finally, we discuss the various biological pathways directly regulated by lyso-PSs in mammals and prospect new questions for this still emerging biomedically important signalling lysophospholipid.


Assuntos
Metabolismo dos Lipídeos , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Animais , Transporte Biológico , Degranulação Celular/imunologia , Humanos , Lisofosfolipídeos/química , Macrófagos/imunologia , Macrófagos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Lipídeos de Membrana/metabolismo , Redes e Vias Metabólicas , Oxirredução , Fagocitose/imunologia , Relação Estrutura-Atividade
7.
Biochemistry ; 59(2): 183-196, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31478652

RESUMO

The metabolic serine hydrolase family is, arguably, one of the largest functional enzyme classes in mammals, including humans, comprising 1-2% of the total proteome. This enzyme family uses a conserved nucleophilic serine residue in the active site to perform diverse hydrolytic reactions and consists of proteases, lipases, esterases, amidases, and transacylases, which are prototypical members of this family. In humans, this enzyme family consists of >250, of which approximately 40% members remain unannotated, in terms of both their endogenous substrates and the biological pathways that they regulate. The enzyme ABHD14B, an outlying member of this family, is also known as CCG1/TAFII250-interacting factor B, as it was found to be associated with transcription initiation factor TFIID. The crystal structure of human ABHD14B was determined more than a decade ago; however, its endogenous substrates remain elusive. In this paper, we annotate ABHD14B as a lysine deacetylase (KDAC), showing this enzyme's ability to transfer an acetyl group from a post-translationally acetylated lysine to coenzyme A (CoA), to yield acetyl-CoA, while regenerating the free amine of protein lysine residues. We validate these findings by in vitro biochemical assays using recombinantly purified human ABHD14B in conjunction with cellular studies in a mammalian cell line by knocking down ABHD14B and by identification of a putative substrate binding site. Finally, we report the development and characterization of a much-needed, exquisitely selective ABHD14B antibody, and using it, we map the cellular and tissue distribution of ABHD14B and prospective metabolic pathways that this enzyme might biologically regulate.


Assuntos
Acetiltransferases/metabolismo , Histona Acetiltransferases/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Coenzima A/química , Ensaios Enzimáticos , Escherichia coli/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Hidrolases , Camundongos Endogâmicos C57BL , Coelhos , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/genética
8.
Free Radic Res ; 53(7): 815-827, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31223033

RESUMO

Insulin resistance (IR) is known to precede onset of type 2 diabetes and increased oxidative stress appears to be a deleterious factor leading to IR. In this study, we evaluated ability of pterostilbene (PTS), a methoxylated analogue of resveratrol and a known antioxidant, to reverse palmitic acid (PA)-mediated IR in HepG2 cells. PTS prevented reactive oxygen species (ROS) formation and subsequent oxidative lipid damage by reducing the expression of NADPH oxidase 3 (NOX3) in PA treated HepG2 cells. Hepatic glucose production was used as a measure of IR and PTS reversed PA-mediated increase in hepatic glucose production by reducing expression of genes coding for gluconeogenic enzymes namely glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate carboxylase (PC); and their transcription factors cAMP response element binding protein (CREB) and fork head class Box O (FOXO1) along with its coactivator peroxisome proliferator-activated receptor gamma co-activator-1 α (PGC1α). PTS reversed PA-mediated activation of c-Jun N-terminal kinase (JNK), which in turn altered insulin signalling pathway by phosphorylating IRS-1 at Ser 307, leading to inhibition of phosphorylation of Akt and GSK-3ß. PTS also reduced PA-mediated lipid accumulation by reducing expression of transcription factors SREBP1c and PPARα. SREBP1c activates genes involved in fatty acid and triglyceride synthesis while PPARα activates CPT1, a rate limiting enzyme for controlling entry and oxidation of fatty acids into mitochondria. PTS, however, did not influence PA uptake confirmed by using BODIPY-labelled fluorescent C16 fatty acid analogue. Thus, our data provides a possible mechanistic explanation for reversal of PA-mediated IR in HepG2 cells.


Assuntos
Resistência à Insulina/genética , Ácido Palmítico/efeitos adversos , Estilbenos/uso terapêutico , Triglicerídeos/metabolismo , Células Hep G2 , Humanos , Estresse Oxidativo , Estilbenos/farmacologia
9.
J Med Chem ; 62(14): 6785-6795, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31241934

RESUMO

The alarming global rise in fatalities from multidrug-resistant Staphylococcus aureus (S. aureus) infections has underscored a need to develop new therapies to address this epidemic. Chemoproteomics is valuable in identifying targets for new drugs in different human diseases including bacterial infections. Targeting functional cysteines is particularly attractive, as they serve critical catalytic functions that enable bacterial survival. Here, we report an indole-based quinone epoxide scaffold with a unique boat-like conformation that allows steric control in modulating thiol reactivity. We extensively characterize a lead compound (4a), which potently inhibits clinically derived vancomycin-resistant S. aureus. Leveraging diverse chemoproteomic platforms, we identify and biochemically validate important transcriptional factors as potent targets of 4a. Interestingly, each identified transcriptional factor has a conserved catalytic cysteine residue that confers antibiotic tolerance to these bacteria. Thus, the chemical tools and biological targets that we describe here prospect new therapeutic paradigms in combatting S. aureus infections.


Assuntos
Benzoquinonas/farmacologia , Compostos de Epóxi/farmacologia , Indóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Resistência a Vancomicina/efeitos dos fármacos , Antibacterianos/farmacologia , Benzoquinonas/química , Descoberta de Drogas , Compostos de Epóxi/química , Humanos , Indóis/química , Modelos Moleculares , Proteômica , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacologia
10.
ACS Chem Biol ; 13(8): 2280-2287, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29963848

RESUMO

Phagocytosis is an evolutionarily conserved biological process where pathogens or cellular debris are cleared by engulfing them in a membrane-enclosed cellular compartment called the phagosome. The formation, maturation, and subsequent degradation of a phagosome is an important immune response essential for protection against many pathogens. Yet, the global lipid profile of phagosomes remains unknown, especially as a function of their maturation in immune cells. Here, we show using mass spectrometry based quantitative lipidomics that the ceramide class of lipids, especially very long chain ceramides, are enriched on maturing phagosomes with a concomitant decrease in the biosynthetic precursors of ceramides. We thus posit a new function for the enzyme ceramide synthase during phagocytosis in mammalian macrophages. Biochemical assays, cellular lipid feeding experiments, and pharmacological blockade of ceramide synthase together show that this enzyme indeed controls the flux of ceramides on maturing phagosomes. We also find similar results in the primitive eukaryote Dictyostelium discoideum, suggesting that ceramide enrichment may be evolutionarily conserved and likely an indispensible step in phagosome maturation.


Assuntos
Ceramidas/metabolismo , Dictyostelium/enzimologia , Macrófagos/metabolismo , Oxirredutases/metabolismo , Fagossomos/metabolismo , Animais , Dictyostelium/metabolismo , Metabolômica , Camundongos , Fagocitose , Proteínas de Protozoários/metabolismo , Células RAW 264.7
11.
J Lipid Res ; 58(1): 226-235, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836991

RESUMO

Variations in the gene LDAH (C2ORF43), which encodes lipid droplet-associated hydrolase (LDAH), are among few loci associated with human prostate cancer. Homologs of LDAH have been identified as proteins of lipid droplets (LDs). LDs are cellular organelles that store neutral lipids, such as triacylglycerols and sterol esters, as precursors for membrane components and as reservoirs of metabolic energy. LDAH is reported to hydrolyze cholesterol esters and to be important in macrophage cholesterol ester metabolism. Here, we confirm that LDAH is localized to LDs in several model systems. We generated a murine model in which Ldah is disrupted but found no evidence for a major function of LDAH in cholesterol ester or triacylglycerol metabolism in vivo, nor a role in energy or glucose metabolism. Our data suggest that LDAH is not a major cholesterol ester hydrolase, and an alternative metabolic function may be responsible for its possible effect on development of prostate cancer.


Assuntos
Ésteres do Colesterol/genética , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Serina Proteases/genética , Animais , Ésteres do Colesterol/metabolismo , Metabolismo Energético/genética , Glucose/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Serina Proteases/metabolismo , Triglicerídeos/metabolismo
12.
Nat Chem Biol ; 11(2): 164-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25580854

RESUMO

Lysophosphatidylserines (lyso-PSs) are a class of signaling lipids that regulate immunological and neurological processes. The metabolism of lyso-PSs remains poorly understood in vivo. Recently, we determined that ABHD12 is a major brain lyso-PS lipase, implicating lyso-PSs in the neurological disease polyneuropathy, hearing loss, ataxia, retinitis pigmentosa and cataract (PHARC), which is caused by null mutations in the ABHD12 gene. Here, we couple activity-based profiling with pharmacological and genetic methods to annotate the poorly characterized enzyme ABHD16A as a phosphatidylserine (PS) lipase that generates lyso-PS in mammalian systems. We describe a small-molecule inhibitor of ABHD16A that depletes lyso-PSs from cells, including lymphoblasts derived from subjects with PHARC. In mouse macrophages, disruption of ABHD12 and ABHD16A respectively increases and decreases both lyso-PSs and lipopolysaccharide-induced cytokine production. Finally, Abhd16a(-/-) mice have decreased brain lyso-PSs, which runs counter to the elevation in lyso-PS in Abhd12(-/-) mice. Our findings illuminate an ABHD16A-ABHD12 axis that dynamically regulates lyso-PS metabolism in vivo, designating these enzymes as potential targets for treating neuroimmunological disorders.


Assuntos
Fatores Imunológicos/metabolismo , Lisofosfolipídeos/metabolismo , Monoacilglicerol Lipases/genética , Fosfolipases/genética , Animais , Encéfalo/enzimologia , Encéfalo/imunologia , Encéfalo/metabolismo , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Fatores Imunológicos/imunologia , Lisofosfolipídeos/imunologia , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Knockout , Mutação , Fosfolipases/antagonistas & inibidores
13.
Bioorg Med Chem Lett ; 25(2): 317-21, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25541002

RESUMO

ß-Lactones are a privileged structural motif as enzyme inhibitors and chemical probes, particularly for the inhibition of enzymes from the serine hydrolase class. Herein, we demonstrate that cross-metathesis (CM) of α-methylene-ß-lactones offers rapid access to structurally diverse, previously unexplored ß-lactones. Combining this approach with competitive activity-based protein profiling (ABPP) identified lead ß-lactone inhibitors/probes for several serine hydrolases, including disease-associated enzymes and enzymes of uncharacterized function. The structural diversity afforded by the α-methylene-ß-lactone scaffold thus expands the landscape of serine hydrolases that can be targeted by small-molecule inhibitors and should further the functional characterization of enzymes from this class through the optimization of target-selective probes.


Assuntos
Encéfalo/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Lactonas/química , Lactonas/farmacologia , Proteoma/análise , Serina Endopeptidases/química , Inibidores de Serina Proteinase/farmacologia , Animais , Ligação Competitiva , Encéfalo/enzimologia , Cromatografia Líquida , Neoplasias do Colo/enzimologia , Humanos , Camundongos , Estrutura Molecular , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Biochemistry ; 52(42): 7366-8, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24111876

RESUMO

The C-P lyase complex in bacteria catalyzes the transformation of phosphonates to orthophosphate under conditions of phosphate starvation. The first committed step in the C-P lyase-catalyzed reaction is the displacement of adenine from MgATP by phosphonate substrates, yielding ribose-1-phosphonate-5-triphosphate. In the C-P lyase complex, this reaction is catalyzed by the nucleosidase PhnI and modulated by the addition of PhnG, PhnH, and PhnL. Here we describe the synthesis of Immucillin-A triphosphate, a mimic of the transition state structure for the nucleosidase reaction catalyzed by PhnI. This compound inhibits PhnI with a dissociation constant of 20 nM at pH 7.5.


Assuntos
Adenina/análogos & derivados , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Liases/antagonistas & inibidores , Polifosfatos/farmacologia , Pirrolidinas/farmacologia , Adenina/farmacologia , Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Catálise , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Liases/metabolismo , Magnésio/metabolismo , Modelos Químicos , Organofosfonatos/metabolismo , Pentosefosfatos/metabolismo
15.
Nature ; 497(7447): 132-6, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23615610

RESUMO

Methane is a potent greenhouse gas that is produced in significant quantities by aerobic marine organisms. These bacteria apparently catalyse the formation of methane through the cleavage of the highly unreactive carbon-phosphorus bond in methyl phosphonate (MPn), but the biological or terrestrial source of this compound is unclear. However, the ocean-dwelling bacterium Nitrosopumilus maritimus catalyses the biosynthesis of MPn from 2-hydroxyethyl phosphonate and the bacterial C-P lyase complex is known to convert MPn to methane. In addition to MPn, the bacterial C-P lyase complex catalyses C-P bond cleavage of many alkyl phosphonates when the environmental concentration of phosphate is low. PhnJ from the C-P lyase complex catalyses an unprecedented C-P bond cleavage reaction of ribose-1-phosphonate-5-phosphate to methane and ribose-1,2-cyclic-phosphate-5-phosphate. This reaction requires a redox-active [4Fe-4S]-cluster and S-adenosyl-L-methionine, which is reductively cleaved to L-methionine and 5'-deoxyadenosine. Here we show that PhnJ is a novel radical S-adenosyl-L-methionine enzyme that catalyses C-P bond cleavage through the initial formation of a 5'-deoxyadenosyl radical and two protein-based radicals localized at Gly 32 and Cys 272. During this transformation, the pro-R hydrogen from Gly 32 is transferred to the 5'-deoxyadenosyl radical to form 5'-deoxyadenosine and the pro-S hydrogen is transferred to the radical intermediate that ultimately generates methane. A comprehensive reaction mechanism is proposed for cleavage of the C-P bond by the C-P lyase complex that uses a covalent thiophosphate intermediate for methane and phosphate formation.


Assuntos
Bactérias/metabolismo , Biocatálise , Metano/biossíntese , Aerobiose , Archaea/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Glicina/química , Glicina/metabolismo , Hidrogênio/metabolismo , Liases/química , Liases/metabolismo , Espectrometria de Massas , Metano/química , Metano/metabolismo , Metionina/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pentosefosfatos/química , Pentosefosfatos/metabolismo , S-Adenosilmetionina/metabolismo
16.
Nature ; 480(7378): 570-3, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22089136

RESUMO

Phosphorus is an essential element for all known forms of life. In living systems, phosphorus is an integral component of nucleic acids, carbohydrates and phospholipids, where it is incorporated as a derivative of phosphate. However, most Gram-negative bacteria have the capability to use phosphonates as a nutritional source of phosphorus under conditions of phosphate starvation. In these organisms, methylphosphonate is converted to phosphate and methane. In a formal sense, this transformation is a hydrolytic cleavage of a carbon-phosphorus (C-P) bond, but a general enzymatic mechanism for the activation and conversion of alkylphosphonates to phosphate and an alkane has not been elucidated despite much effort for more than two decades. The actual mechanism for C-P bond cleavage is likely to be a radical-based transformation. In Escherichia coli, the catalytic machinery for the C-P lyase reaction has been localized to the phn gene cluster. This operon consists of the 14 genes phnC, phnD, …, phnP. Genetic and biochemical experiments have demonstrated that the genes phnG, phnH, …, phnM encode proteins that are essential for the conversion of phosphonates to phosphate and that the proteins encoded by the other genes in the operon have auxiliary functions. There are no functional annotations for any of the seven proteins considered essential for C-P bond cleavage. Here we show that methylphosphonate reacts with MgATP to form α-D-ribose-1-methylphosphonate-5-triphosphate (RPnTP) and adenine. The triphosphate moiety of RPnTP is hydrolysed to pyrophosphate and α-D-ribose-1-methylphosphonate-5-phosphate (PRPn). The C-P bond of PRPn is subsequently cleaved in a radical-based reaction producing α-D-ribose-1,2-cyclic-phosphate-5-phosphate and methane in the presence of S-adenosyl-L-methionine. Substantial quantities of phosphonates are produced worldwide for industrial processes, detergents, herbicides and pharmaceuticals. Our elucidation of the chemical steps for the biodegradation of alkylphosphonates shows how these compounds can be metabolized and recycled to phosphate.


Assuntos
Escherichia coli/metabolismo , Organofosfonatos/química , Organofosfonatos/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Liases/genética , Liases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA