Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 35(21): 8232-44, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019338

RESUMO

Cue-induced methamphetamine seeking progressively increases after withdrawal (incubation of methamphetamine craving), but the underlying mechanisms are largely unknown. We determined whether this incubation is associated with alterations in candidate genes in dorsal striatum (DS), a brain area implicated in cue- and context-induced drug relapse. We first measured mRNA expression of 24 candidate genes in whole DS extracts after short (2 d) or prolonged (1 month) withdrawal in rats following extended-access methamphetamine or saline (control condition) self-administration (9 h/d, 10 d). We found minimal changes. Next, using fluorescence-activated cell sorting, we compared gene expression in Fos-positive dorsal striatal neurons, which were activated during "incubated" cue-induced drug-seeking tests after prolonged withdrawal, with nonactivated Fos-negative neurons. We found significant increases in mRNA expression of immediate early genes (Arc, Egr1), Bdnf and its receptor (Trkb), glutamate receptor subunits (Gria1, Gria3, Grm1), and epigenetic enzymes (Hdac3, Hdac4, Hdac5, GLP, Dnmt3a, Kdm1a) in the Fos-positive neurons only. Using RNAscope to determine striatal subregion and cell-type specificity of the activated neurons, we measured colabeling of Fos with Drd1 and Drd2 in three DS subregions. Fos expression was neither subregion nor cell-type specific (52.5 and 39.2% of Fos expression colabeled with Drd1 and Drd2, respectively). Finally, we found that DS injections of SCH23390 (C17H18ClNO), a D1-family receptor antagonist known to block cue-induced Fos induction, decreased incubated cue-induced methamphetamine seeking after prolonged withdrawal. Results demonstrate a critical role of DS in incubation of methamphetamine craving and that this incubation is associated with selective gene-expression alterations in cue-activated D1- and D2-expressing DS neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Corpo Estriado/metabolismo , Fissura/fisiologia , Metanfetamina/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/biossíntese , Receptor trkB/biossíntese , Receptores de Glutamato/biossíntese , Animais , Corpo Estriado/efeitos dos fármacos , Fissura/efeitos dos fármacos , Sinais (Psicologia) , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Regulação da Expressão Gênica , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Autoadministração
2.
J Neurosci ; 35(14): 5625-39, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855177

RESUMO

Context-induced reinstatement of drug seeking is a well established animal model for assessing the neural mechanisms underlying context-induced drug relapse, a major factor in human drug addiction. Neural activity in striatum has previously been shown to contribute to context-induced reinstatement of heroin, cocaine, and alcohol seeking, but not yet for methamphetamine seeking. In this study, we found that context-induced reinstatement of methamphetamine seeking increased expression of the neural activity marker Fos in dorsal but not ventral striatum. Reversible inactivation of neural activity in dorsolateral but not dorsomedial striatum using the GABA agonists muscimol and baclofen decreased context-induced reinstatement. Based on our previous findings that Fos-expressing neurons play a critical role in conditioned drug effects, we assessed whether context-induced reinstatement was associated with molecular alterations selectively induced within context-activated Fos-expressing neurons. We used fluorescence-activated cell sorting to isolate reinstatement-activated Fos-positive neurons from Fos-negative neurons in dorsal striatum and used quantitative PCR to assess gene expression within these two populations of neurons. Context-induced reinstatement was associated with increased expression of the immediate early genes Fos and FosB and the NMDA receptor subunit gene Grin2a in only Fos-positive neurons. RNAscope in situ hybridization confirmed that Grin2a, as well as Grin2b, expression were increased in only Fos-positive neurons from dorsolateral, but not dorsomedial, striatum. Our results demonstrate an important role of dorsolateral striatum in context-induced reinstatement of methamphetamine seeking and that this reinstatement is associated with unique gene alterations in Fos-expressing neurons.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Corpo Estriado/citologia , Comportamento de Procura de Droga/efeitos dos fármacos , Metanfetamina/administração & dosagem , Neurônios/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , Reforço Psicológico , Análise de Variância , Animais , Extinção Psicológica , Citometria de Fluxo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas v-fos/genética , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Autoadministração
3.
Behav Brain Res ; 216(1): 146-52, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20655955

RESUMO

In humans, iron deficiency early in life produces persistent, impaired cognition. Dietary iron replacement does not ameliorate these problems and to date, no attempt to treat these individuals pharmacologically has been reported. The aim of this work was to test the hypothesis that rats made iron deficient in early infancy exhibit cognitive deficits similar to those seen in humans at adolescence. A second aim was to investigate whether the deficit could be treated pharmacologically. Sprague-Dawley rats were made iron deficient (ID) starting at postnatal day 4 by being placed with iron-deficient dams (vs. control). At weaning, all pups were placed on an iron-sufficient diet for the remainder of the study. At 45 days of age, the animals were tested for attention set shifting. After testing, the animals were assigned to one of three methylphenidate (MePh) dose groups, 1, 5 or 10 mg/kg, p.o., vs. vehicle control and treated daily for 15 days prior to a second round of attention set shift testing and continued throughout testing. The results showed that ID rats performed more poorly than controls overall on attentional set-shift testing. MePh improved ID rats' performance and lower doses were more effective than higher doses. This is the first demonstration that MePh can improve cognitive deficits produced by early ID in animals. These findings may open the possibility of pharmacotherapy to treat the persistent cognitive difficulties in children who were severely iron deficient in early infancy.


Assuntos
Anemia Ferropriva/complicações , Atenção/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Metilfenidato/uso terapêutico , Análise de Variância , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Transtornos Cognitivos/etiologia , Feminino , Masculino , Metilfenidato/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA